Colorimetric monitoring of nanoscale actuation in DNA-templated plasmonic nanostructures (Conference Presentation)

Author(s):  
Elise Gayet ◽  
Laurent Lermusiaux ◽  
Gaetan Bellot ◽  
Sébastien Bidault
Soft Matter ◽  
2021 ◽  
Author(s):  
Zhaoyi Wang ◽  
Ningning Zhang ◽  
Jincheng Li ◽  
Jun Lu ◽  
Li Zhao ◽  
...  

Chiral assemblies by combining natural biomolecules with plasmonic nanostructures hold great promise for plasmonic enhanced sensing, imaging, and catalytic applications. Herein, we demonstrate that human serum albumin (HSA) and porcine...


ACS Nano ◽  
2021 ◽  
Vol 15 (3) ◽  
pp. 5715-5724
Author(s):  
Mei Song ◽  
Lianming Tong ◽  
Shengli Liu ◽  
Yaowen Zhang ◽  
Junyu Dong ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 975-982
Author(s):  
Huanhuan Su ◽  
Shan Wu ◽  
Yuhan Yang ◽  
Qing Leng ◽  
Lei Huang ◽  
...  

AbstractPlasmonic nanostructures have garnered tremendous interest in enhanced light–matter interaction because of their unique capability of extreme field confinement in nanoscale, especially beneficial for boosting the photoluminescence (PL) signals of weak light–matter interaction materials such as transition metal dichalcogenides atomic crystals. Here we report the surface plasmon polariton (SPP)-assisted PL enhancement of MoS2 monolayer via a suspended periodic metallic (SPM) structure. Without involving metallic nanoparticle–based plasmonic geometries, the SPM structure can enable more than two orders of magnitude PL enhancement. Systematic analysis unravels the underlying physics of the pronounced enhancement to two primary plasmonic effects: concentrated local field of SPP enabled excitation rate increment (45.2) as well as the quantum yield amplification (5.4 times) by the SPM nanostructure, overwhelming most of the nanoparticle-based geometries reported thus far. Our results provide a powerful way to boost two-dimensional exciton emission by plasmonic effects which may shed light on the on-chip photonic integration of 2D materials.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
M. Saad Bin-Alam ◽  
Orad Reshef ◽  
Yaryna Mamchur ◽  
M. Zahirul Alam ◽  
Graham Carlow ◽  
...  

AbstractPlasmonic nanostructures hold promise for the realization of ultra-thin sub-wavelength devices, reducing power operating thresholds and enabling nonlinear optical functionality in metasurfaces. However, this promise is substantially undercut by absorption introduced by resistive losses, causing the metasurface community to turn away from plasmonics in favour of alternative material platforms (e.g., dielectrics) that provide weaker field enhancement, but more tolerable losses. Here, we report a plasmonic metasurface with a quality-factor (Q-factor) of 2340 in the telecommunication C band by exploiting surface lattice resonances (SLRs), exceeding the record by an order of magnitude. Additionally, we show that SLRs retain many of the same benefits as localized plasmonic resonances, such as field enhancement and strong confinement of light along the metal surface. Our results demonstrate that SLRs provide an exciting and unexplored method to tailor incident light fields, and could pave the way to flexible wavelength-scale devices for any optical resonating application.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Min-Wen Yu ◽  
Satoshi Ishii ◽  
Shisheng Li ◽  
Ji-Ren Ku ◽  
Jhen-Hong Yang ◽  
...  

AbstractExciton–polariton coupling between transition metal dichalcogenide (TMD) monolayer and plasmonic nanostructures generates additional states that are rich in physics, gaining significant attention in recent years. In exciton–polariton coupling, the understanding of electronic-energy exchange in Rabi splitting is critical. The typical structures that have been adopted to study the coupling are “TMD monolayers embedded in a metallic-nanoparticle-on-mirror (NPoM) system.” However, the exciton orientations are not parallel to the induced dipole direction of the NPoM system, which leads to inefficient coupling. Our proposed one-dimensional plasmonic nanogrooves (NGs) can align the MoS2 monolayers’ exciton orientation and plasmon polaritons in parallel, which addresses the aforementioned issue. In addition, we clearly reveal the maximum surface potential (SP) change on intermediate coupled sample by the photo-excitation caused by the carrier rearrangement. As a result, a significant Rabi splitting (65 meV) at room temperature is demonstrated. Furthermore, we attribute the photoluminescence enhancement to the parallel exciton–polariton interactions.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ye Wang ◽  
Jiongdong Zhao ◽  
Yu Zhu ◽  
Shurong Dong ◽  
Yang Liu ◽  
...  

AbstractHere, we present integrated nanorod arrays on microfluidic chips for fast and sensitive flow-through immunoassays of physiologically relevant macromolecules. Dense arrays of Au nanorods are easily fabricated through one-step oblique angle deposition, which eliminates the requirement of advanced lithography methods. We report the utility of this plasmonic structure to improve the detection limit of the cardiac troponin I (cTnI) assay by over 6 × 105-fold, reaching down to 33.9 fg mL−1 (~1.4 fM), compared with an identical assay on glass substrates. Through monolithic integration with microfluidic elements, the device enables a flow-through assay for quantitative detection of cTnI in the serum with a detection sensitivity of 6.9 pg mL−1 (~0.3 pM) in <6 min, which was 4000 times lower than conventional glass devices. This ultrasensitive detection arises from the large surface area for antibody conjugation and metal-enhanced fluorescent signals through plasmonic nanostructures. Moreover, due to the parallel arrangement of flow paths, simultaneous detection of multiple cancer biomarkers, including prostate-specific antigen and carcinoembryonic antigen, has been fulfilled with increased signal-to-background ratios. Given the high performance of this assay, together with its simple fabrication process that is compatible with standard mass manufacturing techniques, we expect that the prepared integrated nanorod device can bring on-site point-of-care diagnosis closer to reality.


Small Science ◽  
2020 ◽  
pp. 2000055
Author(s):  
Jinxing Chen ◽  
Zuyang Ye ◽  
Fan Yang ◽  
Yadong Yin

Sign in / Sign up

Export Citation Format

Share Document