New low-density, high-porosity lithium hydride-beryllium hydride foam: properties and applications to x-ray astronomy

1991 ◽  
Author(s):  
Jon L. Maienschein ◽  
Patrick E. Barry ◽  
Frederick E. McMurphy ◽  
John S. Bowers
1991 ◽  
Vol 132 ◽  
pp. 143-152 ◽  
Author(s):  
Jon L. Maienschein ◽  
Patrick E. Barry ◽  
Frederick McMurphy ◽  
John Bowers

Icarus ◽  
2012 ◽  
Vol 221 (2) ◽  
pp. 1190
Author(s):  
Minami Yasui ◽  
Masahiko Arakawa ◽  
Sunao Hasegawa ◽  
Yukihiro Fujita ◽  
Toshihiko Kadono
Keyword(s):  

Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 484
Author(s):  
Matthias Schuster ◽  
Dominik Stapf ◽  
Tobias Osterrieder ◽  
Vincent Barthel ◽  
Peter J. Wellmann

Copper indium gallium sulfo-selenide (CIGS) based solar cells show the highest conversion efficiencies among all thin-film photovoltaic competition. However, the absorber material manufacturing is in most cases dependent on vacuum-technology like sputtering and evaporation, and the use of toxic and environmentally harmful substances like H2Se. In this work, the goal to fabricate dense, coarse grained CuInSe2 (CISe) thin-films with vacuum-free processing based on nanoparticle (NP) precursors was achieved. Bimetallic copper-indium, elemental selenium and binary selenide (Cu2−xSe and In2Se3) NPs were synthesized by wet-chemical methods and dispersed in nontoxic solvents. Layer-stacks from these inks were printed on molybdenum coated float-glass-substrates via doctor-blading. During the temperature treatment, a face-to-face technique and mechanically applied pressure were used to transform the precursor-stacks into dense CuInSe2 films. By combining liquid phase sintering and pressure sintering, and using a seeding layer later on, issues like high porosity, oxidation, or selenium- and indium-depletion were overcome. There was no need for external Se atmosphere or H2Se gas, as all of the Se was directly in the precursor and could not leave the face-to-face sandwich. All thin-films were characterized with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and UV/vis spectroscopy. Dense CISe layers with a thickness of about 2–3 µm and low band gap energies of 0.93–0.97 eV were formed in this work, which show potential to be used as a solar cell absorber.


2007 ◽  
Vol 3 (1-2) ◽  
pp. 233-236 ◽  
Author(s):  
J. Rzadkiewicz ◽  
O. Rosmej ◽  
A. Blazevic ◽  
V.P. Efremov ◽  
A. Gójska ◽  
...  

2013 ◽  
Vol 102 (9) ◽  
pp. 094105 ◽  
Author(s):  
Wanli Shang ◽  
Jiamin Yang ◽  
Yunsong Dong
Keyword(s):  

2021 ◽  
Vol 922 (2) ◽  
pp. 121
Author(s):  
Cassandra Lochhaas ◽  
Jason Tumlinson ◽  
Brian W. O’Shea ◽  
Molly S. Peeples ◽  
Britton D. Smith ◽  
...  

Abstract The classical definition of the virial temperature of a galaxy halo excludes a fundamental contribution to the energy partition of the halo: the kinetic energy of nonthermal gas motions. Using simulations of low-redshift, ∼L* galaxies from the Figuring Out Gas & Galaxies In Enzo (FOGGIE) project that are optimized to resolve low-density gas, we show that the kinetic energy of nonthermal motions is roughly equal to the energy of thermal motions. The simulated FOGGIE halos have ∼2× lower bulk temperatures than expected from a classical virial equilibrium, owing to significant nonthermal kinetic energy that is formally excluded from the definition of T vir. We explicitly derive a modified virial temperature including nonthermal gas motions that provides a more accurate description of gas temperatures for simulated halos in virial equilibrium. Strong bursts of stellar feedback drive the simulated FOGGIE halos out of virial equilibrium, but the halo gas cannot be accurately described by the standard virial temperature even when in virial equilibrium. Compared to the standard virial temperature, the cooler modified virial temperature implies other effects on halo gas: (i) the thermal gas pressure is lower, (ii) radiative cooling is more efficient, (iii) O vi absorbing gas that traces the virial temperature may be prevalent in halos of a higher mass than expected, (iv) gas mass estimates from X-ray surface brightness profiles may be incorrect, and (v) turbulent motions make an important contribution to the energy balance of a galaxy halo.


Sign in / Sign up

Export Citation Format

Share Document