Determination of exterior parameters for video image sequences from helicopter by block adjustment with combined vertical and oblique images

Author(s):  
Jianqing Zhang ◽  
Yong Zhang ◽  
Zuxun Zhang
2017 ◽  
Vol 5 (4) ◽  
pp. 861-879 ◽  
Author(s):  
Ellen Schwalbe ◽  
Hans-Gerd Maas

Abstract. This paper presents a comprehensive method for the determination of glacier surface motion vector fields at high spatial and temporal resolution. These vector fields can be derived from monocular terrestrial camera image sequences and are a valuable data source for glaciological analysis of the motion behaviour of glaciers. The measurement concepts for the acquisition of image sequences are presented, and an automated monoscopic image sequence processing chain is developed. Motion vector fields can be derived with high precision by applying automatic subpixel-accuracy image matching techniques on grey value patterns in the image sequences. Well-established matching techniques have been adapted to the special characteristics of the glacier data in order to achieve high reliability in automatic image sequence processing, including the handling of moving shadows as well as motion effects induced by small instabilities in the camera set-up. Suitable geo-referencing techniques were developed to transform image measurements into a reference coordinate system.The result of monoscopic image sequence analysis is a dense raster of glacier surface point trajectories for each image sequence. Each translation vector component in these trajectories can be determined with an accuracy of a few centimetres for points at a distance of several kilometres from the camera. Extensive practical validation experiments have shown that motion vector and trajectory fields derived from monocular image sequences can be used for the determination of high-resolution velocity fields of glaciers, including the analysis of tidal effects on glacier movement, the investigation of a glacier's motion behaviour during calving events, the determination of the position and migration of the grounding line and the detection of subglacial channels during glacier lake outburst floods.


2017 ◽  
Author(s):  
Ellen Schwalbe ◽  
Hans-Gerd Maas

Abstract. This paper presents a comprehensive method for the determination of motion vector fields of glaciers at high spatial and temporal resolution. These vector fields can be derived from monocular terrestrial camera image sequences and are a valuable data source for glaciological analysis of the motion behaviour of glaciers. The measurement concepts for the acquisition of image sequences are presented, and an automated monoscopic image sequence processing chain is developed. Motion vector fields can be derived with high precision by applying automatic sub-pixel-accuracy image matching techniques on grey value patterns in the image sequences. Well-established matching techniques have been adapted to the special characteristics of the glacier data in order to achieve high reliability in automatic image sequence processing, including the handling of moving shadows as well as motion effects induced by small instabilities in the camera setup. Suitable geo-referencing techniques were developed to transform image measurements into a reference coordinate system. The result of the monoscopic image sequence analysis is a dense raster of glacier surface point trajectories for each image sequence. Each translation vector component in these trajectories can be determined with an accuracy of some centimetres for points at a distance of several kilometres from the camera. Extensive practical validation experiments show that motion vector and trajectory fields derived from monocular image sequences can be used for the determination of high resolution velocity fields of glaciers, for the analysis of the effects of tides on glacier movement, for the investigation of a glacier's motion behaviour during calving events, for the determination of the position and migration of the grounding line and for the detection of sub glacial channels during glacier lake outburst floods.


2015 ◽  
Vol 7 (15) ◽  
pp. 6318-6324 ◽  
Author(s):  
Bahram Hemmateenejad ◽  
Fatemeh Shakerizadeh-Shirazi ◽  
Sahar Heidari ◽  
Arezoo Shahrivar-kevishahi

A simple, cost-effective and rapid method for the visual detection of dopamine (DA) and ascorbic acid (AsA) based on the video-image analysis has been developed.


1993 ◽  
Vol 38 (8) ◽  
pp. 1065-1080 ◽  
Author(s):  
H Benali ◽  
I Buvat ◽  
F Frouin ◽  
J P Bazin ◽  
R Di Paola

Sign in / Sign up

Export Citation Format

Share Document