Erratum: “Reflections on a Wave Packet Approach to Quantum Mechanical Barrier Penetration” [Amer. J. Phys.38, 1136 (1970)]

1971 ◽  
Vol 39 (4) ◽  
pp. 457-457
Author(s):  
Mark H. Bramhali ◽  
Barry M. Casper
1998 ◽  
Vol 13 (05) ◽  
pp. 347-351 ◽  
Author(s):  
MURAT ÖZER

We attempt to treat the very early Universe according to quantum mechanics. Identifying the scale factor of the Universe with the width of the wave packet associated with it, we show that there cannot be an initial singularity and that the Universe expands. Invoking the correspondence principle, we obtain the scale factor of the Universe and demonstrate that the causality problem of the standard model is solved.


1992 ◽  
Vol 96 (3) ◽  
pp. 2077-2084 ◽  
Author(s):  
Thanh N. Truong ◽  
John J. Tanner ◽  
Piotr Bala ◽  
J. Andrew McCammon ◽  
Donald J. Kouri ◽  
...  

2009 ◽  
Vol 24 (27) ◽  
pp. 2203-2211 ◽  
Author(s):  
PULAK RANJAN GIRI

We show that the intriguing localization of a free particle wave-packet is possible due to a hidden scale present in the system. Self-adjoint extensions (SAE) is responsible for introducing this scale in quantum mechanical models through the nontrivial boundary conditions. We discuss a couple of classically scale invariant free particle systems to illustrate the issue. In this context it has been shown that a free quantum particle moving on a full line may have localized wave-packet around the origin. As a generalization, it has also been shown that particles moving on a portion of a plane or on a portion of a three-dimensional space can have unusual localized wave-packet.


Sign in / Sign up

Export Citation Format

Share Document