The time course of top-down processing during speech perception by normal hearing and cochlear-implant users

2016 ◽  
Vol 140 (4) ◽  
pp. 3449-3449
Author(s):  
Anita E. Wagner
2010 ◽  
Vol 10 ◽  
pp. 329-339 ◽  
Author(s):  
Torsten Rahne ◽  
Michael Ziese ◽  
Dorothea Rostalski ◽  
Roland Mühler

This paper describes a logatome discrimination test for the assessment of speech perception in cochlear implant users (CI users), based on a multilingual speech database, the Oldenburg Logatome Corpus, which was originally recorded for the comparison of human and automated speech recognition. The logatome discrimination task is based on the presentation of 100 logatome pairs (i.e., nonsense syllables) with balanced representations of alternating “vowel-replacement” and “consonant-replacement” paradigms in order to assess phoneme confusions. Thirteen adult normal hearing listeners and eight adult CI users, including both good and poor performers, were included in the study and completed the test after their speech intelligibility abilities were evaluated with an established sentence test in noise. Furthermore, the discrimination abilities were measured electrophysiologically by recording the mismatch negativity (MMN) as a component of auditory event-related potentials. The results show a clear MMN response only for normal hearing listeners and CI users with good performance, correlating with their logatome discrimination abilities. Higher discrimination scores for vowel-replacement paradigms than for the consonant-replacement paradigms were found. We conclude that the logatome discrimination test is well suited to monitor the speech perception skills of CI users. Due to the large number of available spoken logatome items, the Oldenburg Logatome Corpus appears to provide a useful and powerful basis for further development of speech perception tests for CI users.


2015 ◽  
Vol 26 (06) ◽  
pp. 572-581 ◽  
Author(s):  
Stanley Sheft ◽  
Min-Yu Cheng ◽  
Valeriy Shafiro

Background: Past work has shown that low-rate frequency modulation (FM) may help preserve signal coherence, aid segmentation at word and syllable boundaries, and benefit speech intelligibility in the presence of a masker. Purpose: This study evaluated whether difficulties in speech perception by cochlear implant (CI) users relate to a deficit in the ability to discriminate among stochastic low-rate patterns of FM. Research Design: This is a correlational study assessing the association between the ability to discriminate stochastic patterns of low-rate FM and the intelligibility of speech in noise. Study Sample: Thirteen postlingually deafened adult CI users participated in this study. Data Collection and Analysis: Using modulators derived from 5-Hz lowpass noise applied to a 1-kHz carrier, thresholds were measured in terms of frequency excursion both in quiet and with a speech-babble masker present, stimulus duration, and signal-to-noise ratio in the presence of a speech-babble masker. Speech perception ability was assessed in the presence of the same speech-babble masker. Relationships were evaluated with Pearson product–moment correlation analysis with correction for family-wise error, and commonality analysis to determine the unique and common contributions across psychoacoustic variables to the association with speech ability. Results: Significant correlations were obtained between masked speech intelligibility and three metrics of FM discrimination involving either signal-to-noise ratio or stimulus duration, with shared variance among the three measures accounting for much of the effect. Compared to past results from young normal-hearing adults and older adults with either normal hearing or a mild-to-moderate hearing loss, mean FM discrimination thresholds obtained from CI users were higher in all conditions. Conclusions: The ability to process the pattern of frequency excursions of stochastic FM may, in part, have a common basis with speech perception in noise. Discrimination of differences in the temporally distributed place coding of the stimulus could serve as this common basis for CI users.


2019 ◽  
Vol 23 ◽  
pp. 233121651983662 ◽  
Author(s):  
Robert H. Pierzycki ◽  
Charlotte Corner ◽  
Claire A. Fielden ◽  
Pádraig T. Kitterick

Clinical observations suggest that tinnitus may interfere with programming cochlear implants (CIs), the process of optimizing the transmission of acoustic information to support speech perception with a CI. Despite tinnitus being highly prevalent among CI users, its effects and impact on CI programming are obscure. This study characterized the nature, time-course, and impact of tinnitus effects encountered by audiologists and patients during programming appointments. Semistructured interviews with six CI audiologists were analyzed thematically to identify tinnitus effects on programming and related coping strategies. Cross-sectional surveys with 67 adult CI patients with tinnitus and 20 CI audiologists in the United Kingdom examined the prevalence and time-course of those effects. Programming parameters established at CI activation appointments of 10 patients with tinnitus were compared with those of 10 patients without tinnitus. On average, 80% of audiologists and 45% of patients reported that tinnitus makes measurements of threshold (T) levels more difficult because patients confuse their tinnitus with CI stimulation. Difficulties appeared most common at CI activation appointments, at which T levels were significantly higher in patients with tinnitus. On average, 26% of patients reported being afraid of “loud” CI stimulation worsening tinnitus, affecting measurements of loudest comfortable (C) stimulation levels, and 34% of audiologists reported observing similar effects. Patients and audiologists reported that tinnitus makes programming appointments more difficult and tiresome for patients. The findings suggest that specific programming strategies may be needed during CI programming with tinnitus, but further research is required to assess the potential impact on outcomes including speech perception.


2011 ◽  
Vol 22 (09) ◽  
pp. 623-632 ◽  
Author(s):  
René H. Gifford ◽  
Amy P. Olund ◽  
Melissa DeJong

Background: Current cochlear implant recipients are achieving increasingly higher levels of speech recognition; however, the presence of background noise continues to significantly degrade speech understanding for even the best performers. Newer generation Nucleus cochlear implant sound processors can be programmed with SmartSound strategies that have been shown to improve speech understanding in noise for adult cochlear implant recipients. The applicability of these strategies for use in children, however, is not fully understood nor widely accepted. Purpose: To assess speech perception for pediatric cochlear implant recipients in the presence of a realistic restaurant simulation generated by an eight-loudspeaker (R-SPACE™) array in order to determine whether Nucleus sound processor SmartSound strategies yield improved sentence recognition in noise for children who learn language through the implant. Research Design: Single subject, repeated measures design. Study Sample: Twenty-two experimental subjects with cochlear implants (mean age 11.1 yr) and 25 control subjects with normal hearing (mean age 9.6 yr) participated in this prospective study. Intervention: Speech reception thresholds (SRT) in semidiffuse restaurant noise originating from an eight-loudspeaker array were assessed with the experimental subjects’ everyday program incorporating Adaptive Dynamic Range Optimization (ADRO) as well as with the addition of Autosensitivity control (ASC). Data Collection and Analysis: Adaptive SRTs with the Hearing In Noise Test (HINT) sentences were obtained for all 22 experimental subjects, and performance—in percent correct—was assessed in a fixed +6 dB SNR (signal-to-noise ratio) for a six-subject subset. Statistical analysis using a repeated-measures analysis of variance (ANOVA) evaluated the effects of the SmartSound setting on the SRT in noise. Results: The primary findings mirrored those reported previously with adult cochlear implant recipients in that the addition of ASC to ADRO significantly improved speech recognition in noise for pediatric cochlear implant recipients. The mean degree of improvement in the SRT with the addition of ASC to ADRO was 3.5 dB for a mean SRT of 10.9 dB SNR. Thus, despite the fact that these children have acquired auditory/oral speech and language through the use of their cochlear implant(s) equipped with ADRO, the addition of ASC significantly improved their ability to recognize speech in high levels of diffuse background noise. The mean SRT for the control subjects with normal hearing was 0.0 dB SNR. Given that the mean SRT for the experimental group was 10.9 dB SNR, despite the improvements in performance observed with the addition of ASC, cochlear implants still do not completely overcome the speech perception deficit encountered in noisy environments accompanying the diagnosis of severe-to-profound hearing loss. Conclusion: SmartSound strategies currently available in latest generation Nucleus cochlear implant sound processors are able to significantly improve speech understanding in a realistic, semidiffuse noise for pediatric cochlear implant recipients. Despite the reluctance of pediatric audiologists to utilize SmartSound settings for regular use, the results of the current study support the addition of ASC to ADRO for everyday listening environments to improve speech perception in a child's typical everyday program.


Sign in / Sign up

Export Citation Format

Share Document