Effect of Intensified Endurance Training on Pacing and Performance in 4000-m Cycling Time Trials

2018 ◽  
Vol 13 (6) ◽  
pp. 735-741
Author(s):  
Alice M. Wallett ◽  
Amy L. Woods ◽  
Nathan Versey ◽  
Laura A. Garvican-Lewis ◽  
Marijke Welvaert ◽  
...  

Studies examining pacing strategies during 4000-m cycling time trials (TTs) typically ensure that participants are not prefatigued; however, competitive cyclists often undertake TTs when already fatigued. This study aimed to determine how TT pacing strategies and sprint characteristics of cyclists change during an intensified training period (mesocycle). Thirteen cyclists regularly competing in A- and B-grade cycling races and consistently training (>10 h/wk for 4 [1] y) completed a 6-wk training mesocycle. Participants undertook individually prescribed training, using training stress scores (TrainingPeaks, Boulder, CO), partitioned into a baseline week, a build week, 2 loading weeks (designed to elicit an overreached state), and 2 recovery weeks. Laboratory-based tests (15-s sprint and TT) and Recovery-Stress Questionnaire (RESTQ-52) responses were repeatedly undertaken over the mesocycle. TT power output increased during recovery compared with baseline and loading weeks (P = .001) with >6-W increases in mean power output (MPO) detected for 400-m sections (10% bins) from 1200 to 4000 m in recovery weeks. Decreases in peak heart rate (P < .001) during loading weeks and postexercise blood lactate (P = .005) during loading week 2 and recovery week 1 were detected. Compared with baseline, 15-s sprint MPO declined during loading and recovery weeks (P < .001). An interaction was observed between RESTQ-52 total stress score with a 15-s sprint (P = .003) and with a TT MPO (P = .04), indicating that participants who experienced greater stress during loading weeks exhibited reduced performance. To conclude, intensified endurance training diminished sprint performance but improved 4000-m TT performance, with a subtle change in MPO evident over the last 70% of TTs.

2010 ◽  
Vol 5 (4) ◽  
pp. 459-468 ◽  
Author(s):  
Jeremiah J. Peiffer ◽  
Chris R. Abbiss

The use of elliptical chainrings (also called chainwheels or sprockets) has gained considerable interest in the amateur and professional cycling community. Nevertheless, we are unaware of any scientific studies that have examined the performance benefits of using elliptical chainrings during an actual performance trial. Therefore, this study examined the influence of elliptical chainring use on physiological and performance parameters during a 10 km cycling time trial. Nine male cyclists completed, in a counterbalanced order, three 10 km cycling time trials using either a standard chainring or an elliptical chainring at two distinct settings. An attempt was made to blind the cyclists to the type of chainring used until the completion of the study. During the 10 km time trial, power output and heart rate were recorded at a frequency of 1 Hz and RPE was measured at 3, 6, and 8.5 km. Total power output was not different (P = .40) between the circular (340 ± 30 W) or either elliptical chainring condition (342 ± 29 W and 341 ± 31 W). Similarly, no differences (P = .73) in 2 km mean power output were observed between conditions. Further, no differences in RPE were observed between conditions measured at 3, 6, and 8.5 km. Heart rate was significantly greater (P = .02) using the less aggressive elliptical setting (174 ± 10 bpm) compared with the circular setting (171 ± 9 bpm). Elliptical chainrings do not appear to provide a performance benefit over traditional circular chainrings during a mid-distance time trial.


2019 ◽  
Vol 14 (9) ◽  
pp. 1273-1279 ◽  
Author(s):  
Owen Jeffries ◽  
Mark Waldron ◽  
Stephen D. Patterson ◽  
Brook Galna

Purpose: Regulation of power output during cycling encompasses the integration of internal and external demands to maximize performance. However, relatively little is known about variation in power output in response to the external demands of outdoor cycling. The authors compared the mean power output and the magnitude of power-output variability and structure during a 20-min time trial performed indoors and outdoors. Methods: Twenty male competitive cyclists ( 60.4 [7.1] mL·kg−1·min−1) performed 2 randomized maximal 20-min time-trial tests: outdoors at a cycle-specific racing circuit and indoors on a laboratory-based electromagnetically braked training ergometer, 7 d apart. Power output was sampled at 1 Hz and collected on the same bike equipped with a portable power meter in both tests. Results: Twenty-minute time-trial performance indoor (280 [44] W) was not different from outdoor (284 [41] W) (P = .256), showing a strong correlation (r = .94; P < .001). Within-persons SD was greater outdoors (69 [21] W) than indoors (33 [10] W) (P < .001). Increased variability was observed across all frequencies in data from outdoor cycling compared with indoors (P < .001) except for the very slowest frequency bin (<0.0033 Hz, P = .930). Conclusions: The findings indicate a greater magnitude of variability in power output during cycling outdoors. This suggests that constraints imposed by the external environment lead to moderate- and high-frequency fluctuations in power output. Therefore, indoor testing protocols should be designed to reflect the external demands of cycling outdoors.


Author(s):  
Vicente Ávila-Gandía ◽  
Antonio Torregrosa-García ◽  
Antonio J. Luque-Rubia ◽  
María Salud Abellán-Ruiz ◽  
Desirée Victoria-Montesinos ◽  
...  

Abstract Background Fish oils were studied as ergogenic aids in a number of mixed physical trial designs showing promising results. However, the heterogeneous purity of the studied supplements, combined with the variety of physical tests employed call for more studies to confirm these findings, ideally with standardised supplements. Our aim was to test a supplement highly concentrated in DHA (DHA:EPA ratio equal to approximately 8:1) on a maximal cycling test to elucidate performance improvements mainly due to DHA. Methods A double-blind, placebo controlled, randomised balanced, parallel design, in competitive amateur cyclists was employed. They were all male, older than 18 years old, with training routine of 2 to 4 sessions per week lasting at least one hour each. A ramp cycling test to exhaustion with a subsequent 5 min recovery phase was employed before and after treatment to analyse aerobic metabolism and lactate clearance after the bout. After 30 days of supplementation with 975 mg of re-esterified DHA, the thirty-eight cyclist who completed the study were finally included for statistical analysis. Results Mean power output at ventilatory threshold 2 (VT2) improved after DHA supplementation both as absolute (△DHA versus △PLA: 6.33–26.54 Watts; CI 95%) and relative (p=0.006) values, paralleled with higher oxygen consumption at VT2 both for absolute (DHA 2729.4 ±304.5, 3045.9 ±335.0; PLA 2792.3 ±339.5, 2845.5 ±357.1; ml·min−1 baseline versus post p=0.025) and relative values (DHA 36.6 ±5.0, 41.2 ±5.4; PLA 37.2 ±5.7, 38.1 ±5.2; ml·kg−1·min−1 baseline versus post p=0.024). Heart rate recovery rate improved during the recovery phase in the DHA group compared to PLA (p=0.005). Conclusion DHA is capable of improving mean power output at the ventilatory threshold 2 (anaerobic ventilatory threshold) in amateur competitive cyclists. It is unclear if these findings are the result of the specific DHA supplement blend or another factor.


2018 ◽  
Vol 13 (3) ◽  
pp. 268-273 ◽  
Author(s):  
Ana B. Peinado ◽  
Nuria Romero-Parra ◽  
Miguel A. Rojo-Tirado ◽  
Rocío Cupeiro ◽  
Javier Butragueño ◽  
...  

Context: While a number of studies have researched road-cycling performance, few have attempted to investigate the physiological response in field conditions. Purpose: To describe the physiological and performance profile of an uphill time trial (TT) frequently used in cycling competitions. Methods: Fourteen elite road cyclists (mean ± SD age 25 ± 6 y, height 174 ± 4.2 cm, body mass 64.4 ± 6.1 kg, fat mass 7.48% ± 2.82%) performed a graded exercise test to exhaustion to determine maximal parameters. They then completed a field-based uphill TT in a 9.2-km first-category mountain pass with a 7.1% slope. Oxygen uptake (VO2), power output, heart rate (HR), lactate concentration, and perceived-exertion variables were measured throughout the field-based test. Results: During the uphill TT, mean power output and velocity were 302 ± 7 W (4.2 ± 0.1 W/kg) and 18.7 ± 1.6 km/h, respectively. Mean VO2 and HR were 61.6 ± 2.0 mL · kg−1 · min−1 and 178 ± 2 beats/min, respectively. Values were significantly affected by the 1st, 2nd, 6th, and final kilometers (P < .05). Lactate concentration and perceived exertion were 10.87 ± 1.12 mmol/L and 19.1 ± 0.1, respectively, at the end of the test, being significantly different from baseline measures. Conclusion: The studied uphill TT is performed at 90% of maximum HR and VO2 and 70% of maximum power output. To the authors’ knowledge, this is the first study assessing cardiorespiratory parameters combined with measures of performance, perceived exertion, and biochemical variables during a field-based uphill TT in elite cyclists.


2019 ◽  
Vol 40 (12) ◽  
pp. 796-802 ◽  
Author(s):  
F. Javier Nuñez ◽  
Moisés de Hoyo ◽  
Alejandro Muñoz López ◽  
Borja Sañudo ◽  
Carlos Otero-Esquina ◽  
...  

AbstractThe aims of this study were to analyse the effect of chronic strength training over concentric power (CON), eccentric power (ECC), ECC/CON ratio, and 20 m linear sprint performance in elite young soccer players. Twenty young elite Spanish soccer players were assigned to an experimental group (CPG) which performed a front-step exercise using a conical pulley, 2–3 sets of 6 repetitions each leg, during 9 weeks (CPG, n=10) in addition to its usual strength training, or to a control group (CG, n=10). The improvements in the ECC mean power (36%, ES=1.61), and ECC / CON ratio (17%, ES=1.77) were substantially greater in the CPG than in the CG while the CON mean power (16%, ES=0.83) was substantially greater in the CG than in the CPG. The sprinting time for 10 m (2.8%, ES=0.78) and the 10 m flying time between 10–20 m (1.72%, ES=0.41) were substantially enhanced in CPG and CG respectively. To be efficient when defining a functional strength training and performance increments using an inertial device, the mean power output need to be measured during the CON and ECC phases and an analysis of the ECC / CON ratio should be included.


Sports ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 92 ◽  
Author(s):  
Chris Whittle ◽  
Neal Smith ◽  
Simon Jobson

The use of mobile power measuring devices has become widespread within cycling, with a number of manufacturers now offering power measuring pedals. This study aimed to investigate the validity of PowerTap P1 pedals by comparing them with the previously validated Wattbike ergometer. Ten trained cyclists performed three simulated 10-mile (16-km) time trials on a Wattbike, while using PowerTap P1 pedals. There were no statistically significant differences (p > 0.05) between PowerTap P1 pedals and a Wattbike for maximum, minimum, and mean power output, or for maximum, minimum, and mean cadence. There were good to excellent levels of agreement between the PowerTap P1 pedals and Wattbike (ICC > 0.8) for all measured variables except minimum cadence (ICC = 0.619). This suggests that PowerTap P1 pedals provide a valid measurement of power output.


2017 ◽  
Vol 12 (5) ◽  
pp. 655-661 ◽  
Author(s):  
Andrea Nicolò ◽  
Ilenia Bazzucchi ◽  
Massimo Sacchetti

Purpose:To verify the accuracy of predicting performance in the severe-intensity domain by means of end-test power output (EP) and the work performed above EP (WEP) obtained from a 3-min all-out test in competitive cyclists.Methods:Ten welltrained cyclists performed a ramp incremental test and a 3-min all-out familiarization test. Subsequently, they performed a 3-min all-out experimental test to obtain EP and WEP and a 10-min time trial (TT). The actual 10-min-TT mean power output was then compared with the power output predicted as P = WEP/Tlim + EP, where Tlim corresponds to 600 s. The ramp-test peak power output (PPO) was compared with PPO predicted as , where S represents the ramp slope (0.5 W/s).Results:The actual (347 ± 30 W) and predicted (376 ± 48 W) 10-min TT mean power output were correlated (r = .87, P = .001) but significantly different (P < .01). The coefficient of variation (CV) between the predicted and actual performance was 5.6% ± 4.4%. The error of prediction was positively correlated to EP (r = .80, P = .005) and negatively correlated to WEP (r = –.71, P = .021). No significant difference was found between the 10-min-TT mean power output and EP (351 ± 53 W). The actual (438 ± 30 W) and predicted (472 ± 41 W) ramp PPO were correlated (r = .88, P < .001) but significantly different (P < .001). The CV between the predicted and actual PPO was 5.2% ± 3%. The error of prediction was positively correlated to EP (r = .63, P = .051).Conclusions:EP and WEP obtained from a 3-min all-out test overestimate severe-intensity performance in competitive cyclists.


Author(s):  
Xabier Muriel ◽  
Pedro L. Valenzuela ◽  
Manuel Mateo-March ◽  
Jesús G. Pallarés ◽  
Alejandro Lucia ◽  
...  

Purpose: To compare the physical demands and performance indicators of male professional cyclists of 2 different categories (Union Cycliste Internationale WorldTour [WT] and ProTeam [PT]) during a cycling grand tour. Methods: A WT team (n = 8, 31.4 [5.4] y) and a PT team (n = 7, 26.9 [3.3] y) that completed “La Vuelta 2020” volunteered to participate. Participants’ power output (PO) was registered, and measures of physical demand and physiological performance (kilojoules spent, training stress score, time spent at different PO bands/zones, and mean maximal PO [MMP] for different exertion durations) were computed. Results: WT achieved a higher final individual position than PT (31 [interquartile range = 33] vs 71 [59], P = .004). WT cyclists showed higher mean PO and kilojoule values than their PT peers and spent more time at high-intensity PO values (>5.25 W·kg−1) and zones (91%–120% of individualized functional threshold power) (Ps < .05). Although no differences were found for MMP values in the overall analysis (P > .05), subanalyses revealed that the between-groups gap increased through the race, with WT cyclists reaching higher MMP values for ≥5-minute efforts in the second and third weeks (Ps < .05). Conclusions: Despite the multifactorial nature of cycling performance, WT cyclists spend more time at high intensities and show higher kilojoules and mean PO than their PT referents during a grand tour. Although the highest MMP values attained during the whole race might not differentiate between WT and PT cyclists, the former achieve higher MMP values as the race progresses.


Author(s):  
Bernhard Prinz ◽  
Dieter Simon ◽  
Harald Tschan ◽  
Alfred Nimmerichter

Purpose: To determine aerobic and anaerobic demands of mountain bike cross-country racing. Methods: Twelve elite cyclists (7 males;  = 73.8 [2.6] mL·min-1·kg−1, maximal aerobic power [MAP] = 370 [26] W, 5.7 [0.4] W·kg−1, and 5 females;  = 67.3 [2.9] mL·min−1·kg−1, MAP = 261 [17] W, 5.0 [0.1] W·kg−1) participated over 4 seasons at several (119) international and national races and performed laboratory tests regularly to assess their aerobic and anaerobic performance. Power output, heart rate, and cadence were recorded throughout the races. Results: The mean race time was 79 (12) minutes performed at a mean power output of 3.8 (0.4) W·kg−1; 70% (7%) MAP (3.9 [0.4] W·kg−1 and 3.6 [0.4] W·kg−1 for males and females, respectively) with a cadence of 64 (5) rev·min−1 (including nonpedaling periods). Time spent in intensity zones 1 to 4 (below MAP) were 28% (4%), 18% (8%), 12% (2%), and 13% (3%), respectively; 30% (9%) was spent in zone 5 (above MAP). The number of efforts above MAP was 334 (84), which had a mean duration of 4.3 (1.1) seconds, separated by 10.9 (3) seconds with a mean power output of 7.3 (0.6) W·kg−1 (135% [9%] MAP). Conclusions: These findings highlight the importance of the anaerobic energy system and the interaction between anaerobic and aerobic energy systems. Therefore, the ability to perform numerous efforts above MAP and a high aerobic capacity are essential to be competitive in mountain bike cross-country.


Sign in / Sign up

Export Citation Format

Share Document