scholarly journals PRMT8 as a phospholipase regulates Purkinje cell dendritic arborization and motor coordination

2015 ◽  
Vol 1 (11) ◽  
pp. e1500615 ◽  
Author(s):  
Jun-Dal Kim ◽  
Kyung-Eui Park ◽  
Junji Ishida ◽  
Koichiro Kako ◽  
Juri Hamada ◽  
...  

The development of vertebrate neurons requires a change in membrane phosphatidylcholine (PC) metabolism. Although PC hydrolysis is essential for enhanced axonal outgrowth mediated by phospholipase D (PLD), less is known about the determinants of PC metabolism on dendritic arborization. We show that protein arginine methyltransferase 8 (PRMT8) acts as a phospholipase that directly hydrolyzes PC, generating choline and phosphatidic acid. We found that PRMT8 knockout mice (prmt8−/−) displayed abnormal motor behaviors, including hindlimb clasping and hyperactivity. Moreover, prmt8−/− mice and TALEN-induced zebrafish prmt8 mutants and morphants showed abnormal phenotypes, including the development of dendritic trees in Purkinje cells and altered cerebellar structure. Choline and acetylcholine levels were significantly decreased, whereas PC levels were increased, in the cerebellum of prmt8−/− mice. Our findings suggest that PRMT8 acts both as an arginine methyltransferase and as a PC-hydrolyzing PLD that is essential for proper neurological functions.

1989 ◽  
Vol 16 (3) ◽  
pp. 257-262
Author(s):  
Lena Gustavsson ◽  
Christofer Lundqvist ◽  
Christer Ailing

The effects of phorbol esters on phospholipase D activity were studied in C-6 glioma cells. The cell lipids were prelabelled with [3H]-glycerol or [14C]-arachidonic acid. Phosphatidylethanol was formed during stimulation with 100nM 12-0-tetradecanoylphorbol-13-acetate (TPA), when ethanol was present in the culture medium. After 30 minutes of stimulation, phosphatidylethanol constituted 2.6% of the [3H]-glycerol-labelled lipids. Stimulating the cells with TPA in the absence of ethanol caused a significant increase in labelled phosphatidic acid. This increase was inhibited by ethanol. The present findings demonstrate that TPA stimulates phospholipase D activity in cultured C-6 glioma cells.


1969 ◽  
Vol 112 (5) ◽  
pp. 795-799 ◽  
Author(s):  
R. H. Quarles ◽  
R. M. C. Dawson

1. The activity of phospholipase D (phosphatidylcholine phosphatidohydrolase, EC 3.1.4.4) towards ultrasonically treated phosphatidylcholine or large phosphatidylcholine particles activated with ether was maximal near pH5, and there was little activity above pH6. 2. When the enzyme was activated by the addition of phosphatidic acid to large phosphatidylcholine particles the pH optimum was shifted to pH6·5 irrespective of the amount of activator added. 3. When the enzyme was activated with low concentrations of dodecyl sulphate the pH optimum was 5·5 with little activity above pH6. With higher concentrations of dodecyl sulphate the pH–activity profile was shifted upwards towards a pH optimum of 6·5–6·6, the magnitude of the shift depending on the extent of the hydrolysis. 4. The shifts in the pH–activity profiles cannot be correlated with changes in the ‘surface pH’ of the substrate particles calculated from the measurement of their ζ-potentials (electrophoretic mobilities).


2001 ◽  
Vol 360 (3) ◽  
pp. 707-715 ◽  
Author(s):  
Trevor R. PETTITT ◽  
Mark McDERMOTT ◽  
Khalid M. SAQIB ◽  
Neil SHIMWELL ◽  
Michael J. O. WAKELAM

Mammalian cells contain different phospholipase D enzymes (PLDs) whose distinct physiological roles are poorly understood and whose products have not been characterized. The development of porcine aortic endothelial (PAE) cell lines able to overexpress PLD-1b or −2a under the control of an inducible promoter has enabled us to characterize both the substrate specificity and the phosphatidic acid (PtdOH) product of these enzymes under controlled conditions. Liquid chromatography–MS analysis showed that PLD1b- and PLD2a-transfected PAE cells, as well as COS7 and Rat1 cells, generate similar PtdOH and, in the presence of butan-1-ol, phosphatidylbutanol (PtdBut) profiles, enriched in mono- and di-unsaturated species, in particular 16:0/18:1. Although PtdBut mass increased, the species profile did not change in cells stimulated with ATP or PMA. Overexpression of PLD made little difference to basal or stimulated PtdBut formation, indicating that activity is tightly regulated in vivo and that factors other than just PLD protein levels limit hydrolytic function. In vitro assays using PLD-enriched lysates showed that the enzyme could utilize both phosphatidylcholine and, much less efficiently, phosphatidylethanolamine, with slight selectivity towards mono- and di-unsaturated species. Phosphatidylinositol was not a substrate. Thus PLD1b and PLD2a hydrolyse a structurally similar substrate pool to generate an identical PtdOH product enriched in mono- and di-unsaturated species that we propose to function as the intracellular messenger forms of this lipid.


2000 ◽  
Vol 22 (2) ◽  
pp. 147-154 ◽  
Author(s):  
Teun Munnik ◽  
Harold J. G. Meijer ◽  
Bas ter Riet ◽  
Heribert Hirt ◽  
Wolfgang Frank ◽  
...  

2017 ◽  
Vol 19 (11) ◽  
pp. 4657-4669 ◽  
Author(s):  
Yong-Nan Liu ◽  
Xiao-Xiao Lu ◽  
Dai Chen ◽  
Ya-Ping Lu ◽  
Ang Ren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document