phospholipase d
Recently Published Documents


TOTAL DOCUMENTS

2733
(FIVE YEARS 171)

H-INDEX

108
(FIVE YEARS 8)

2022 ◽  
pp. 100195
Author(s):  
Rebecca Elizabeth Kattan ◽  
Han Han ◽  
Gayoung Seo ◽  
Bing Yang ◽  
Yongqi Lin ◽  
...  

Author(s):  
Weizhi Yu ◽  
Zhi Lin ◽  
Christina M. Woo ◽  
Jeremy M. Baskin
Keyword(s):  

PLoS Genetics ◽  
2021 ◽  
Vol 17 (12) ◽  
pp. e1009905
Author(s):  
Li Qu ◽  
Yu-Jia Chu ◽  
Wen-Hui Lin ◽  
Hong-Wei Xue

Phospholipase D (PLD) hydrolyzes membrane phospholipids and is crucial in various physiological processes and transduction of different signals. Secretory phospholipases play important roles in mammals, however, whose functions in plants remain largely unknown. We previously identified a rice secretory PLD (spPLD) that harbors a signal peptide and here we reported the secretion and function of spPLD in rice heading time regulation. Subcellular localization analysis confirmed the signal peptide is indispensable for spPLD secretion into the extracellular spaces, where spPLD hydrolyzes substrates. spPLD overexpression results in delayed heading time which is dependent on its secretory character, while suppression or deficiency of spPLD led to the early heading of rice under both short-day and long-day conditions, which is consistent with that spPLD overexpression/suppression indeed led to the reduced/increased Hd3a/RFT1 (Arabidopsis Flowing Locus T homolog) activities. Interestingly, rice Hd3a and RFT1 bind to phosphatidylcholines (PCs) and a further analysis by lipidomic approach using mass spectrometry revealed the altered phospholipids profiles in shoot apical meristem, particularly the PC species, under altered spPLD expressions. These results indicate the significance of secretory spPLD and help to elucidate the regulatory network of rice heading time.


2021 ◽  
Vol 14 (12) ◽  
pp. 1266
Author(s):  
Hans O. Kalkman

The adipokine adiponectin improves insulin sensitivity. Functional signal transduction of adiponectin requires at least one of the receptors AdipoR1 or AdipoR2, but additionally the glycosyl phosphatidylinositol-anchored molecule, T-cadherin. Overnutrition causes a reduction in adiponectin synthesis and an increase in the circulating levels of the enzyme glycosyl phosphatidylinositol-phospholipase D (GPI-PLD). GPI-PLD promotes the hydrolysis of T-cadherin. The functional consequence of T-cadherin hydrolysis is a reduction in adiponectin sequestration by responsive tissues, an augmentation of adiponectin levels in circulation and a (further) reduction in signal transduction. This process creates the paradoxical situation that adiponectin levels are augmented, whereas the adiponectin signal transduction and insulin sensitivity remain strongly impaired. Although both hypoadiponectinemia and hyperadiponectinemia reflect a situation of insulin resistance, the treatments are likely to be different.


Plant Science ◽  
2021 ◽  
pp. 111155
Author(s):  
Kunxi Zhang ◽  
Wenjing Shi ◽  
Xin Zheng ◽  
Xuan Liu ◽  
Lixin Wang ◽  
...  

2021 ◽  
Author(s):  
Yan-Xia Liu ◽  
Wei-Yue Sun ◽  
Bin Xue ◽  
Rui-Kai Zhang ◽  
Wen-Juan Li ◽  
...  

Ciliary receptors and their certain downstream signaling components undergo intraflagellar transport (IFT) as BBSome cargoes to maintain their ciliary dynamics for sensing and transducing extracellular stimuli inside the cell. Cargo laden BBSomes shed from retrograde IFT at the proximal ciliary region above the transition zone (TZ) followed by diffusing through the TZ for ciliary retrieval, while how the BBSome barrier passage is controlled remains elusive. Here, we show that the BBSome is a major effector of the Arf-like 3 (ARL3) GTPase in Chlamydomonas. Under physiological condition, ARL3GDP binds the membrane for diffusing into and residing in cilia. Following a nucleotide conversion, ARL3GTP dissociates with the ciliary membrane and binds and recruits the IFT-detached and cargo (phospholipase D, PLD)-laden BBSome at the proximal ciliary region to diffuse through the TZ and out of cilia. ARL3 deficiency impairs ciliary signaling, e.g. phototaxis of Chlamydomonas cells, by disrupting BBSome ciliary retrieval, providing a mechanistic understanding behind BBSome ciliary turnover required for ciliary signaling.


Traffic ◽  
2021 ◽  
Author(s):  
Krystina Wagner ◽  
Thomas K. Smylla ◽  
Marko Lampe ◽  
Jana Krieg ◽  
Armin Huber

2021 ◽  
Vol 12 ◽  
Author(s):  
Changkai Ma ◽  
Qian Zhang ◽  
Jiaoyan Lv ◽  
Kaikai Qiao ◽  
Shuli Fan ◽  
...  

Phospholipase D (PLD) and its hydrolysis product phosphatidic acid play an important role in the regulation of several cellular processes, including root growth, pollen tube elongation, and microtubule reorganization. Here, we systematically identified and analyzed the membership, characterization, and evolutionary relationship of PLDs in five species of cotton. The results of the transcriptomic analysis suggested that the evaluated PLD genes showed high expression levels in anther tissue and during the fiber initiation and elongation periods. Quantitative real-time polymerase chain reaction showed differential expression of GhPLD genes in the anthers of photoperiod sensitive male sterility mutant 5 (psm5). Previous research on multiple stable quantitative trait loci also suggests the role of PLD genes in the fiber development. Further analyses showed that GhPLD2 protein is localized to the plasma membrane. The virus-induced gene silencing of GhPLD2 in cotton seedlings repressed its expression by 40–70%, which led to a reduction in reactive oxygen species (ROS) levels, 22% anther indehiscence, and disrupted fiber initiation and elongation. Thus, we inferred that GhPLD2 may promote ROS production, which, in turn, may regulate anther dehiscence and fiber development.


Sign in / Sign up

Export Citation Format

Share Document