Subsurface cation vacancy stabilization of the magnetite (001) surface

Science ◽  
2014 ◽  
Vol 346 (6214) ◽  
pp. 1215-1218 ◽  
Author(s):  
R. Bliem ◽  
E. McDermott ◽  
P. Ferstl ◽  
M. Setvin ◽  
O. Gamba ◽  
...  

Iron oxides play an increasingly prominent role in heterogeneous catalysis, hydrogen production, spintronics, and drug delivery. The surface or material interface can be performance-limiting in these applications, so it is vital to determine accurate atomic-scale structures for iron oxides and understand why they form. Using a combination of quantitative low-energy electron diffraction, scanning tunneling microscopy, and density functional theory calculations, we show that an ordered array of subsurface iron vacancies and interstitials underlies the well-known (2×2)R45° reconstruction of Fe3O4(001). This hitherto unobserved stabilization mechanism occurs because the iron oxides prefer to redistribute cations in the lattice in response to oxidizing or reducing environments. Many other metal oxides also achieve stoichiometry variation in this way, so such surface structures are likely commonplace.

2021 ◽  
Author(s):  
Mykola Telychko ◽  
Lulu Wang ◽  
Chia-Hsiu Hsu ◽  
Guangwu Li ◽  
Xinnan Peng ◽  
...  

Controllable fabrication of the enantiospecific molecular superlattices is a matter of imminent scientific and technological interest. Herein, we demonstrate that long-range superlattice chirality in molecular self-assemblies can be tailored by tuning the interplay of weak intermolecular non-covalent interactions. Different chiral recognition patterns are achieved in the two molecular self-assemblies comprised by two molecular enantiomers with identical steric conformations, derived from the hexaphenylbenzene – the smallest star-shaped polyphenylene. By means of high-resolution scanning tunneling microscopy measurements, we demonstrate that functionalization of star-shaped polyphenylene with fluorine (F) atoms leads to the formation of molecular self-assemblies with the distinct long-range chiral recognition patterns. We employed the density functional theory calculations to quantify F-mediated lone pair F ···π, C-H··· F, F···F interactions attributed to the tunable enantiospecific molecular self-organizations. Our findings underpin a viable route to tailor long-range chiral recognition patterns in supramolecular assemblies by engineering the weak non-covalent intermolecular interactions.


2021 ◽  
Vol 104 (12) ◽  
Author(s):  
D. Tjeertes ◽  
A. Vela ◽  
T. J. F. Verstijnen ◽  
E. G. Banfi ◽  
P. J. van Veldhoven ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Zhang ◽  
Hanna Enriquez ◽  
Yongfeng Tong ◽  
Andrew J. Mayne ◽  
Azzedine Bendounan ◽  
...  

AbstractThe emergence of peculiar phenomena in 1D phosphorene chains (P chains) has been proposed in theoretical studies, notably the Stark and Seebeck effects, room temperature magnetism, and topological phase transitions. Attempts so far to fabricate P chains, using the top-down approach starting from a few layers of bulk black phosphorus, have failed to produce reliably precise control of P chains. We show that molecular beam epitaxy gives a controllable bottom-up approach to grow atomically thin, crystalline 1D flat P chains on a Ag(111) substrate. Scanning tunneling microscopy, angle-resolved photoemission spectroscopy, and density functional theory calculations reveal that the armchair-shaped chains are semiconducting with an intrinsic 1.80 ± 0.20 eV band gap. This could make these P chains an ideal material for opto-electronic devices.


Sign in / Sign up

Export Citation Format

Share Document