The role of TH1 and TH2 cells in a rodent malaria infection

Science ◽  
1993 ◽  
Vol 260 (5116) ◽  
pp. 1931-1934 ◽  
Author(s):  
A. Taylor-Robinson ◽  
R. Phillips ◽  
A Severn ◽  
S Moncada ◽  
F. Liew
Author(s):  
Anja Windhagen ◽  
Lindsay B. Nicholson ◽  
Howard L. Weiner ◽  
Vijay K. Kuchroo ◽  
David A. Hafler

2002 ◽  
Vol 88 (10) ◽  
pp. 568-575 ◽  
Author(s):  
Sijin Lei ◽  
Howard Lei ◽  
Daid Green ◽  
Joan Gill ◽  
Bianca Conti-Fine ◽  
...  

SummaryDevelopment of antibodies (Ab) that inhibit the procoagulant function of factor VIII (fVIII) seriously complicates the treatment of hemophilia A patients. It also causes acquired hemophilia, a rare yet serious autoimmune disease. The design of effective fVIII-specific tolerizing procedures will require elucidation of the role of the different CD4+ T cell subsets that drive inhibitor synthesis. To examine the contribution of Th1 and Th2 cells in the anti-fVIII Ab response, we measured the concentration of Th1- and Th2-driven anti-fVIII IgG subclasses in 17 patients with severe hemophilia A and 18 patients with acquired hemophilia. We found that both congenital and acquired hemophilia patients had similar and comparable proportions of Th1- and Th2-induced anti-fVIII Ab, suggesting a more important role of Th1 cells in the immune response to fVIII than previously appreciated. The distribution of anti-fVIII IgG subclasses was stable for periods of up to six months. More intense anti-fVIII Ab responses and higher inhibitor titers correlated with a predominance of Th2-driven subclasses. In contrast, Th1-driven anti-fVIII Ab were predominant in patients who had low anti-fVIII Ab concentrations, even when this was the result of successful immune tolerance or immunosuppressive therapy, which had caused drastic reduction or disappearance of inhibitors.Thus, synthesis of Th2-driven inhibitors occurs when the anti-fVIII Ab response is intense, while Th1 cells may be involved in the long-term maintenance of anti-fVIII Ab synthesis.


Author(s):  
Anja Windhagen ◽  
Lindsay B. Nicholson ◽  
Howard L. Weiner ◽  
Vijay K. Kuchroo ◽  
David A. Hafler
Keyword(s):  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 709-709
Author(s):  
Lequn Li ◽  
Jin Sub Kim ◽  
Vassiliki A Boussiotis

Abstract Abstract 709 The differentiation and functional specialization of effector T cells allows for effective immune response to diverse insults. However, tight regulation of effector T cell responses is required for effective control of infections and avoidance of autoimmunity. Naïve CD4 T cells can differentiate into IFN-γ-secreting type I (Th1) cells and IL-4-secreting type II (Th2) cells. Recently, the Th1/Th2 paradigm of T helper (Th) cells differentiation has been expanded following the discovery of a third subset of effector Th cells that produce IL-17 (Th17). Regulatory T (Treg) cells have a remarkable ability to prevent naïve T cell differentiation into Th1 and Th2 cells and to suppress immune responses driven by Th1 and Th2 effector cells. The role of Treg cells in regulating IL-17 production remains undetermined. Some studies suggest that Treg cells may promote differentiation of naïve T cells into Th17 cells in the context of inflammatory cytokine milieu. The aim of our present study was to determine the role of Treg cells and conventional CD4+ T cells (Tconv) in the differentiation of IL-17 producing cells in the absence of exogenous cytokines and insults. Naïve Tconv cells stimulated with anti-CD3 mAb in the presence of antigen presenting cells (APCs) secreted significant amounts of IFN-γ and IL-4 but no detectable levels of IL-17, whereas Treg cells were incapable of producing any of these cytokines under the same culture conditions. Production of IFN-γ and IL-4 was significantly reduced by addition of Treg cells in the cultures of Tconv cells with anti-CD3 mAb and APC. In contrast, production of IL-17 was considerably enhanced in these co-culture conditions and the level of IL-17 displayed a positive correlation with the number of Treg cells added in the culture. To evaluate whether TCR-mediated stimulation of both Treg and Tconv cells was required for IL-17 production, we used Tconv cells and Treg cells from two different TCR transgenic mouse strains in H-2b background, 2D2 (MOG35-55-specific) and OT-II (OVA323-339-specific), respectively, and co-cultured them in the presence of APCs (H-2b). Production of IL-17 was not observed when either MOG peptide or OVA peptide alone was added in the cultures. In contrast, addition of both MOG and OVA resulted in production of IL-17, suggesting that simultaneous activation of Tconv and Treg cells was essential for induction of IL-17. To determine the source of IL-17 during co-culture of Treg and Tconv cells, we purified Treg cells from C57/B6 mice and co-cultured them with Tconv cells from the B6 congenic mouse strain B6.PL, which carry the Thy1a (Thy1.1) allele and can be easily recognized by flow cytomeric analysis using a Thy1.1-specific mAb. Detailed evaluation during co-culture revealed that a significant proportion of Thy1.1- T cells (the source of Treg) gradually downregulated expression of Foxp3 while obtaining expression of IL-17. In contrast, there was no significant change in the expression of either Foxp3 or IL-17 in the Thy1.1+ population (the source of Tconv), suggesting that Treg was the main source of IL-17 when stimulated in the presence of antigen and activated Tconv cells. Several cytokines have been implicated in the induction of IL-17, in particular, TGF-β. For this reason, we investigated the potential involvement of TGF-β in this conversion process. Addition of TGF-β to Tconv cultured with APCs and anti-CD3 mAb in the absence of Treg cells resulted in upregulation of Foxp3 but not IL-17. In contrast, addition of TGF-β neutralizing antibody to Tconv cultured with APC and anti-CD3 mAb in the presence of Treg, suppressed IL-17 production. Moreover, assessment of TGF-β signaling in Tconv and Treg cells revealed a dramatically increased level of Smad3 phosphorylation in Treg compared to Tconv cells, indicating a reduced threshold of TGF-β mediated signaling in Treg cells. Taken together, our data indicate that reciprocal interactions of Treg and Tconv cells are required for conversion of Treg into IL-17 producing cells and that TGF-β-mediated signaling is required for this process. In addition, our results provide evidence that Treg may convert into proinflammatory effectors producing IL-17, under conditions that promote Tconv differentiation into Treg cells. These observations provide a new dimension to our understanding of Treg cells functions and may have important implications in therapeutic strategies using Treg cells. Disclosures: No relevant conflicts of interest to declare.


1999 ◽  
Vol 190 (5) ◽  
pp. 617-628 ◽  
Author(s):  
Takashi Nishimura ◽  
Kenji Iwakabe ◽  
Masashi Sekimoto ◽  
Yasushi Ohmi ◽  
Takashi Yahata ◽  
...  

The role of T helper type 1 (Th1) and Th2 cells in tumor immunity was investigated using Th cells induced from ovalbumin (OVA)-specific T cell receptor transgenic mice. Although Th1 cells exhibited stronger cytotoxicity than Th2 cells, both cell types completely eradicated tumors when transferred into mice bearing A20 tumor cells transfected with the OVA gene (A20-OVA). Th1 cells eradicated the tumor mass by inducing cellular immunity, whereas Th2 cells destroyed the tumor by inducing tumor necrosis. Both Th1 and Th2 cells required CD8+ T cells to eliminate tumors, and neither of these cells were able to completely eliminate A20-OVA tumors from T and B cell–deficient RAG2−/− mice. Mice cured from tumors by Th1 and Th2 cell therapy rejected A20-OVA upon rechallenge, but CD8+ cytotoxic T lymphocytes were induced only from spleen cells prepared from cured mice by Th1 cell therapy. Moreover, we demonstrated that Th1 and Th2 cells used distinct adhesion mechanisms during tumor eradication: the leukocyte function-associated antigen (LFA)-1–dependent cell–cell adhesion step was essential for Th1 cell therapy, but not for Th2 cell therapy. These findings demonstrated for the first time the distinct role of antigen-specific Th1 and Th2 cells during eradication of established tumors in vivo.


Sign in / Sign up

Export Citation Format

Share Document