Lifetime mobility of an Arctic woolly mammoth

Science ◽  
2021 ◽  
Vol 373 (6556) ◽  
pp. 806-808
Author(s):  
Matthew J. Wooller ◽  
Clement Bataille ◽  
Patrick Druckenmiller ◽  
Gregory M. Erickson ◽  
Pamela Groves ◽  
...  

Little is known about woolly mammoth (Mammuthus primigenius) mobility and range. Here we use high temporal resolution sequential analyses of strontium isotope ratios along an entire 1.7-meter-long tusk to reconstruct the movements of an Arctic woolly mammoth that lived 17,100 years ago, during the last ice age. We use an isotope-guided random walk approach to compare the tusk’s strontium and oxygen isotope profiles to isotopic maps. Our modeling reveals patterns of movement across a geographically extensive range during the animal’s ~28-year life span that varied with life stages. Maintenance of this level of mobility by megafaunal species such as mammoth would have been increasingly difficult as the ice age ended and the environment changed at high latitudes.

2021 ◽  
Author(s):  
Jesse R. Farmer ◽  
Daniel M. Sigman ◽  
Julie Granger ◽  
Ona M. Underwood ◽  
François Fripiat ◽  
...  

AbstractSalinity-driven density stratification of the upper Arctic Ocean isolates sea-ice cover and cold, nutrient-poor surface waters from underlying warmer, nutrient-rich waters. Recently, stratification has strengthened in the western Arctic but has weakened in the eastern Arctic; it is unknown if these trends will continue. Here we present foraminifera-bound nitrogen isotopes from Arctic Ocean sediments since 35,000 years ago to reconstruct past changes in nutrient sources and the degree of nutrient consumption in surface waters, the latter reflecting stratification. During the last ice age and early deglaciation, the Arctic was dominated by Atlantic-sourced nitrate and incomplete nitrate consumption, indicating weaker stratification. Starting at 11,000 years ago in the western Arctic, there is a clear isotopic signal of Pacific-sourced nitrate and complete nitrate consumption associated with the flooding of the Bering Strait. These changes reveal that the strong stratification of the western Arctic relies on low-salinity inflow through the Bering Strait. In the central Arctic, nitrate consumption was complete during the early Holocene, then declined after 5,000 years ago as summer insolation decreased. This sequence suggests that precipitation and riverine freshwater fluxes control the stratification of the central Arctic Ocean. Based on these findings, ongoing warming will cause strong stratification to expand into the central Arctic, slowing the nutrient supply to surface waters and thus limiting future phytoplankton productivity.


2017 ◽  
Vol 30 (60) ◽  
pp. 253-272 ◽  
Author(s):  
Diego Olstein

Abstract World history can be arranged into three major regional divergences: the 'Greatest Divergence' starting at the end of the last Ice Age (ca. 15,000 years ago) and isolating the Old and the New Worlds from one another till 1500; the 'Great Divergence' bifurcating the paths of Europe and Afro-Asia since 1500; and the 'American Divergence' which divided the fortunes of New World societies from 1500 onwards. Accordingly, all world regions have confronted two divergences: one disassociating the fates of the Old and New Worlds, and the other within either the Old or the New World. Latin America is in the uneasy position that in both divergences it ended up on the 'losing side.' As a result, a contentious historiography of Latin America evolved from the very moment that it was incorporated into the wider world. Three basic attitudes toward the place of Latin America in global history have since emerged and developed: admiration for the major impact that the emergence on Latin America on the world scene imprinted on global history; hostility and disdain over Latin America since it entered the world scene; direct rejection of and head on confrontation in reaction the former. This paper examines each of these three attitudes in five periods: the 'long sixteenth century' (1492-1650); the 'age of crisis' (1650-1780); 'the long nineteenth century' (1780-1914); 'the short twentieth century' (1914-1991); and 'contemporary globalization' (1991 onwards).


1978 ◽  
Vol 15 (8) ◽  
pp. 1272-1283 ◽  
Author(s):  
C. R. Harington ◽  
D. M. Shackleton

A well-preserved molar of a woolly mammoth (Mammuthus primigenius) was recovered from deposits at Chestermere Lake near Calgary. It is probably of late Wisconsin age, and is one of several mammoth fossils collected from Pleistocene sediments in the Calgary area.The Chestermere Lake specimen is considered in relation to 94 records of mammoth cheek teeth from the western Canadian provinces. Of the 94 records, 5 are from Manitoba, 35 are from Saskatchewan, 37 are from Alberta, and 17 are from British Columbia. In addition to specimens of woolly mammoths, remains of Columbian (Mammuthus columbi), imperial (Mammuthus imperator), and southern mammoths (Mammuthus meridionalis) have been collected from Pleistocene deposits of southwestern Canada. Some problems concerning the relationships of North American and Eurasian mammoths are mentioned.


1986 ◽  
Vol 23 (7) ◽  
pp. 909-918 ◽  
Author(s):  
C. R. Harington ◽  
Allan C. Ashworth

A well-preserved third molar of a woolly mammoth (Mammuthus primigenius) was recovered from sand and gravel forming the highest (Herman) prominent strandline of Lake Agassiz near Embden in western Cass County, North Dakota. The Herman strandline is estimated to have formed about 11 500 years BP, and presumably the tooth is of similar age. Perhaps the animal lived in a tundra-like area near the Lake Agassiz shoreline.Additional evidence suggests that woolly mammoths occupied a tundra-like range south of the Wisconsin ice sheets extending from southern British Columbia to the Atlantic continental shelf off Virginia.


2003 ◽  
Vol 59 (1) ◽  
pp. 114-121 ◽  
Author(s):  
Martin J. Siegert ◽  
Richard C. A. Hindmarsh ◽  
Gordon S. Hamilton

AbstractInternal isochronous ice sheet layers, recorded by airborne ice-penetrating radar, were measured along an ice flowline across a large (>1 km high) subglacial hill in the foreground of the Transantarctic Mountains. The layers, dated through an existing stratigraphic link with the Vostok ice core, converge with the ice surface as ice flows over the hill without noticeable change to their separation with each other or the ice base. A two-dimensional ice flow model that calculates isochrons and particle flowpaths and accounts for ice flow over the hill under steady-state conditions requires net ablation (via sublimation) over the stoss face for the predicted isochrons to match the measured internal layers. Satellite remote sensing data show no sign of exposed ancient ice at this site, however. Given the lack of exposed glacial ice, surface balance conditions must have changed recently from the net ablation that is predicted at this site for the last 85,000 years to accumulation.


1988 ◽  
Vol 10 ◽  
pp. 5-9 ◽  
Author(s):  
Claude F. Boutron ◽  
Clair C. Patterson ◽  
Claude Lorius ◽  
V.N. Petrov ◽  
N.I. Barkov

Concentrations of lead (Pb) have been measured by the ultra-clean isotope dilution mass spectrometry technique in various sections of the Antarctic Dome C and Vostok deep ice cores, whose ages range from 3.85 to 155 ka B.P., in order to assess the natural, pre-human, sources of this toxic heavy metal in the global troposphere. Pb concentrations were very low, as low as about 0.3 pg Pb/g during the Holocene and probably during the last interglacial and part of the last ice age. On the other hand, they were quite high, up to about 40 pg Pb/g, during the Last Glacial Maximum and at the end of the penultimate ice age. Wind-blown dust from crustal rock and soil appears to be the main natural source of Pb in the global troposphere. Pb contribution from volcanoes is significant during periods of low Pb only. Contribution from the oceans is insignificant.


2010 ◽  
Vol 17 (5) ◽  
pp. 585-592 ◽  
Author(s):  
C. S. Quiroga Lombard ◽  
P. Balenzuela ◽  
H. Braun ◽  
D. R. Chialvo

Abstract. Spectral analyses performed on records of cosmogenic nuclides reveal a group of dominant spectral components during the Holocene period. Only a few of them are related to known solar cycles, i.e., the De Vries/Suess, Gleissberg and Hallstatt cycles. The origin of the others remains uncertain. On the other hand, time series of North Atlantic atmospheric/sea surface temperatures during the last ice age display the existence of repeated large-scale warming events, called Dansgaard-Oeschger (DO) events, spaced around multiples of 1470 years. The De Vries/Suess and Gleissberg cycles with periods close to 1470/7 (~210) and 1470/17 (~86.5) years have been proposed to explain these observations. In this work we found that a conceptual bistable model forced with the De Vries/Suess and Gleissberg cycles plus noise displays a group of dominant frequencies similar to those obtained in the Fourier spectra from paleo-climate during the Holocene. Moreover, we show that simply changing the noise amplitude in the model we obtain similar power spectra to those corresponding to GISP2 δ18O (Greenland Ice Sheet Project 2) during the last ice age. These results give a general dynamical framework which allows us to interpret the main characteristic of paleoclimate records from the last 100 000 years.


2007 ◽  
Vol 26 (7-8) ◽  
pp. 954-957 ◽  
Author(s):  
Keiichi Takahashi ◽  
Guangbiao Wei ◽  
Hikaru Uno ◽  
Minoru Yoneda ◽  
Changzhu Jin ◽  
...  

1976 ◽  
Vol 13 (2) ◽  
pp. 341-347 ◽  
Author(s):  
Charles S. Churcher ◽  
Alan V. Morgan

The distal end of the left humerus of a grizzly bear, Ursus arctos, has been recovered from above the Early Wisconsin Sunnybrook Till at Woodbridge, Ontario, from the same horizon that previously has yielded remains of the woolly mammoth, Mammuthus primigenius. The age of these specimens is estimated at 40 000–50 000 years BP, within the mid-Wisconsin, Port Talbot Interstadial. The only other recognized Canadian record of a grizzly bear east of Manitoba is from a gravel sequence at Barrie, near Lake Simcoe, Ontario, dated from a bone fragment to 11 700 ± 250 years BP. A specimen recovered in Toronto in 1913 from an Early Wisconsin horizon is also considered to represent the grizzly. Bears of the grizzly type, Ursus arctos-horribilis were present in Ontario before and after the Early and Late Wisconsin ice advances.


Sign in / Sign up

Export Citation Format

Share Document