last ice age
Recently Published Documents


TOTAL DOCUMENTS

262
(FIVE YEARS 41)

H-INDEX

38
(FIVE YEARS 2)

2022 ◽  
Vol 8 ◽  
Author(s):  
Chao Cao ◽  
Feng Cai ◽  
Hongshuai Qi ◽  
Jianhui Liu ◽  
Gang Lei ◽  
...  

Global climate change-induced sea-level rise and storm wave intensification, along with the large population densities and high-intensity human development activities in coastal areas, have caused serious burden and damage to China’s coasts, led to the rapid growth of artificial shorelines development, and formed a “new Great Wall” of reinforced concrete against the laws of nature. After the last ice age, transgression formed the different features of China’s coast. Depending on the types of geological and landform features, coasts are divided into 36 evaluation units, and 10 indicators are selected from natural aspects (including tectonics, geomorphology, sediment, and storms) and aspects of social economy (population, GDP, Gross Domestic Product), and cloud model theory is used to build a coastal erosion vulnerability evaluation index system in China. The results show that high grade (V), high-middle grade (IV), middle grade (III), low-middle grade (II), and low grade (I) coastal erosion vulnerability degrees account for 5.56, 13.89, 41.67, 33.33, and 5.56% of the Chinese coastlines, respectively. The coastal erosion vulnerability of the subsidence zone is significantly higher than that of the uplift zone. Reverse cloud model and analytic hierarchy process calculation show that the main factors that control coastal erosion vulnerability since the transgression after the last ice age are geological structure, topography and lithological features, and in recent years, the decrease in sea sediment loads and increase in reclamation engineering. Mainland China must live with the basic situation of coastal erosion, and this study shows that the index system and method of cloud modeling are suitable for the evaluation of the coastal erosion vulnerability of the Chinese mainland. This study provides a scientific basis for the adaptive management of coastal erosion, coastal disaster assessment and the overall planning of land and sea.


MAUSAM ◽  
2021 ◽  
Vol 52 (1) ◽  
pp. 297-306
Author(s):  
GUFRAN BEIG

Ice core air analysis has indicated a significant variation in the atmospheric contents of the greenhouse gases CO2, CH4 and N2O from the last ice age to the present period. This may have contributed in altering the vertical distribution of temperature and composition of the atmosphere about which not much information is available. The two dimensional interactive model of radiation, dynamics and chemistry has been used to reconstruct the annual vertical distribution of thermal structure and trace gas concentrations of the middle atmosphere for the periods extending from last ice age to the present. For this purpose, ice core air data of the above mentioned forcing parameters are used as input to the model for different time frames including Mounder Maximum, Roman maximum, pre-industrial period and the last glacial period. Model results show that the considerable reduction in the greenhouse gas content for the last ice age has resulted in colling of troposphere and a warming by about 10 to 15° K in the upper stratosphere as compared to present. The variation in temperature is closely related with the water vapour content. The percentage change in ozone concentration for the last glacial period is to a miximum of 50% near the poles in the upper stratosphere and about 10% in the tropics. A significant decrease in the hydroxyl content in the last ice age must have contributed in increasing the ozone content above 30 km. however, the total integrated ozone content appears to show marginal variations from last ice age to the present due to several counter-balancing effects.


2021 ◽  
Vol 118 (49) ◽  
pp. e2107034118
Author(s):  
Natascha Riedinger ◽  
Florian Scholz ◽  
Michelle L. Abshire ◽  
Matthias Zabel

During the last glacial interval, marine sediments recorded reduced current ventilation within the ocean interior below water depths of approximately >1,500 m [B. A. Hoogakker et al., Nat. Geosci. 8, 40–43 (2015)]. The degree of the associated oxygen depletion in the different ocean basins, however, is still poorly constrained. Here, we present sedimentary records of redox-sensitive metals from the southwest African margin. These records show evidence of continuous bottom water anoxia in the eastern South Atlantic during the last glaciation that led to enhanced carbon burial over a prolonged period of time. Our geochemical data indicate that upwelling-related productivity and the associated oxygen minimum zone in the eastern South Atlantic shifted far seaward during the last glacial period and only slowly retreated during deglaciation times. While increased productivity during the last ice age may have contributed to oxygen depletion in bottom waters, especially on the upper slope, slow-down of the Late Quaternary deep water circulation pattern [Rutberg et al., Nature 405, 935–938 (2000)] appears to be the ultimate driver of anoxic conditions in deep waters.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jamie Hodgkins ◽  
Caley M. Orr ◽  
Claudine Gravel-Miguel ◽  
Julien Riel-Salvatore ◽  
Christopher E. Miller ◽  
...  

AbstractThe evolution and development of human mortuary behaviors is of enormous cultural significance. Here we report a richly-decorated young infant burial (AVH-1) from Arma Veirana (Liguria, northwestern Italy) that is directly dated to 10,211–9910 cal BP (95.4% probability), placing it within the early Holocene and therefore attributable to the early Mesolithic, a cultural period from which well-documented burials are exceedingly rare. Virtual dental histology, proteomics, and aDNA indicate that the infant was a 40–50 days old female. Associated artifacts indicate significant material and emotional investment in the child’s interment. The detailed biological profile of AVH-1 establishes the child as the earliest European near-neonate documented to be female. The Arma Veirana burial thus provides insight into sex/gender-based social status, funerary treatment, and the attribution of personhood to the youngest individuals among prehistoric hunter-gatherer groups and adds substantially to the scant data on mortuary practices from an important period in prehistory shortly following the end of the last Ice Age.


2021 ◽  
Vol 8 ◽  
pp. 39-45
Author(s):  
Robert Glenn Johnson

The extremely heavy precipitation that initiated the Last Ice Age (the Wisconsin Glaciation in Canada) was caused by a strong and persistent atmospheric low-pressure system centered over the northern Labrador Sea and southern Baffin Bay. This system, called the Labrador Low, was dependent on strong deep-water formation in the northern end of Baffin Bay. The replacement for the sinking deep water consisted of warmer and more saline Irminger Current water that mixed into the northward-flowing West Greenland Current near the center of the Labrador Low. The heavy precipitation in northeastern Canada began after the stratification in Baffin Bay was eliminated by the southward flow of denser Atlantic water through the Nares Strait. This temporary flow began when the oscillating Atlantic Meridional Oceanic Circulation (AMOC) flow reached a maximum greater than today. This sent Atlantic water westward, north of Greenland and through the Nares Strait. Although the extremely heavy snowfall began the Wisconsin Glaciation in Canada, the initiation of the Last Ice Age in Eurasia was a more complex process and was delayed by about 4,000 years by formation of the Hudson Strait ice dam.


2021 ◽  
Author(s):  
Takao Kagawa ◽  
Tatsuya Noguchi

Abstract Issues of predominant period of ground motion and derived underground velocity structure model were investigated in the coastal plains affected by the soft sedimentary layer after the last ice age. Specifically, it is found that two predominant periods due to the shallow soft sediments and deep sedimentary layers over the seismic bedrock created by the tectonic movement after the quaternary period are close in a small plain such as the Tottori Plain, Japan as an example. It was shown by the analysis of underground velocity structure derived from H/V spectrum ratio of earthquake ground motions with the diffuse wave field theory. It is feared that the interaction of close predominant periods due to the different layer boundaries with high contrast may amplify the seismic motion in the period range that affects building structures in the small plains in coastal area.


2021 ◽  
Vol 269 ◽  
pp. 107130
Author(s):  
W.C. Daniels ◽  
J.M. Russell ◽  
C. Morrill ◽  
W.M. Longo ◽  
A.E. Giblin ◽  
...  

2021 ◽  
Author(s):  
Jesse R. Farmer ◽  
Daniel M. Sigman ◽  
Julie Granger ◽  
Ona M. Underwood ◽  
François Fripiat ◽  
...  

AbstractSalinity-driven density stratification of the upper Arctic Ocean isolates sea-ice cover and cold, nutrient-poor surface waters from underlying warmer, nutrient-rich waters. Recently, stratification has strengthened in the western Arctic but has weakened in the eastern Arctic; it is unknown if these trends will continue. Here we present foraminifera-bound nitrogen isotopes from Arctic Ocean sediments since 35,000 years ago to reconstruct past changes in nutrient sources and the degree of nutrient consumption in surface waters, the latter reflecting stratification. During the last ice age and early deglaciation, the Arctic was dominated by Atlantic-sourced nitrate and incomplete nitrate consumption, indicating weaker stratification. Starting at 11,000 years ago in the western Arctic, there is a clear isotopic signal of Pacific-sourced nitrate and complete nitrate consumption associated with the flooding of the Bering Strait. These changes reveal that the strong stratification of the western Arctic relies on low-salinity inflow through the Bering Strait. In the central Arctic, nitrate consumption was complete during the early Holocene, then declined after 5,000 years ago as summer insolation decreased. This sequence suggests that precipitation and riverine freshwater fluxes control the stratification of the central Arctic Ocean. Based on these findings, ongoing warming will cause strong stratification to expand into the central Arctic, slowing the nutrient supply to surface waters and thus limiting future phytoplankton productivity.


Science ◽  
2021 ◽  
Vol 373 (6556) ◽  
pp. 806-808
Author(s):  
Matthew J. Wooller ◽  
Clement Bataille ◽  
Patrick Druckenmiller ◽  
Gregory M. Erickson ◽  
Pamela Groves ◽  
...  

Little is known about woolly mammoth (Mammuthus primigenius) mobility and range. Here we use high temporal resolution sequential analyses of strontium isotope ratios along an entire 1.7-meter-long tusk to reconstruct the movements of an Arctic woolly mammoth that lived 17,100 years ago, during the last ice age. We use an isotope-guided random walk approach to compare the tusk’s strontium and oxygen isotope profiles to isotopic maps. Our modeling reveals patterns of movement across a geographically extensive range during the animal’s ~28-year life span that varied with life stages. Maintenance of this level of mobility by megafaunal species such as mammoth would have been increasingly difficult as the ice age ended and the environment changed at high latitudes.


Sign in / Sign up

Export Citation Format

Share Document