DNA polymerase κ: Friend or foe?

2020 ◽  
Vol 13 (629) ◽  
pp. eabb2934
Author(s):  
Joann B. Sweasy

In this issue of Science Signaling, Temprine et al. report that up-regulation of the translesion DNA polymerase Polκ mediates resistance to BRAF pathway–targeted inhibitors and starvation in melanoma cells. These results exemplify the role that Polκ plays in cellular adaptation to stress.

Contact ◽  
2021 ◽  
Vol 4 ◽  
pp. 251525642110166
Author(s):  
Verena Kohler ◽  
Sabrina Büttner

Cellular adaptation to stress and metabolic cues requires a coordinated response of different intracellular compartments, separated by semipermeable membranes. One way to facilitate interorganellar communication is via membrane contact sites, physical bridges between opposing organellar membranes formed by an array of tethering machineries. These contact sites are highly dynamic and establish an interconnected organellar network able to quickly respond to external and internal stress by changing size, abundance and molecular architecture. Here, we discuss recent work on nucleus-vacuole junctions, connecting yeast vacuoles with the nucleus. Appearing as small, single foci in mitotic cells, these contacts expand into one enlarged patch upon nutrient exhaustion and entry into quiescence or can be shaped into multiple large foci essential to sustain viability upon proteostatic stress at the nuclear envelope. We highlight the remarkable plasticity and rapid remodelling of these contact sites upon metabolic or proteostatic stress and their emerging importance for cellular fitness.


2020 ◽  
Author(s):  
Yifeng Wu ◽  
William Jaremko ◽  
Ryan C. Wilson ◽  
Janice D. Pata

AbstractDbh is a Y-family translesion DNA polymerase from Sulfolobus acidocaldarius, an archaeal species that grows in harsh environmental conditions. Biochemically, Dbh displays a distinctive mutational profile, creating single-base deletion mutations at extraordinarily high frequencies (up to 50%) in specific repeat sequences. In cells, however, Dbh does not appear to contribute significantly to spontaneous frameshifts in these same sequence contexts. This suggests that either the error-prone DNA synthesis activity of Dbh is reduced in vivo and/or Dbh is restricted from replicating these sequences. Here, we test the hypothesis that the propensity for Dbh to make single base deletion mutations is reduced through interaction with the S. acidocaldarius heterotrimeric sliding clamp processivity factor, PCNA-123. We first confirm that Dbh physically interacts with PCNA-123, with the interaction requiring both the PCNA-1 subunit and the C-terminal 10 amino acids of Dbh, which contain a predicted PCNA-interaction peptide (PIP) motif. This interaction stimulates the polymerase activity of Dbh, even on short, linear primer-template DNA by increasing the rate of nucleotide incorporation. This stimulation requires an intact PCNA-123 heterotrimer and a DNA duplex length of at least 18 basepairs, the minimal length predicted from structural data to bind to both the polymerase and the clamp. Finally, we find that PCNA-123 increases the fidelity of Dbh on a single-base deletion hotspot sequence 3-fold by promoting an increase in the rate of correct, but not incorrect, nucleotide addition and propose that PCNA-123 induces Dbh to adopt a more active conformation that is less prone to creating deletions during DNA synthesis.HighlightsPCNA increases the fidelity of Dbh polymerase on a deletion-hotspot sequence.The interaction stimulates incorporation of the correct, but not incorrect, nucleotide.A minimal duplex length of 18 bp is required for PCNA to stimulate polymerase activity.Structural modeling suggests that PCNA induces a conformational change in Dbh.


Mutagenesis ◽  
2019 ◽  
Author(s):  
Zhenyu Zou ◽  
Tingting Liang ◽  
Zhongyan Xu ◽  
Jiayu Xie ◽  
Shuming Zhang ◽  
...  

Abstract Abasic site as a common DNA lesion blocks DNA replication and is highly mutagenic. Protein interactions in T7 DNA replisome facilitate DNA replication and translesion DNA synthesis. However, bypass of an abasic site by T7 DNA replisome has never been investigated. In this work, we used T7 DNA replisome and T7 DNA polymerase alone as two models to study DNA replication on encountering an abasic site. Relative to unmodified DNA, abasic site strongly inhibited primer extension and completely blocked strand-displacement DNA synthesis, due to the decreased fraction of enzyme–DNA productive complex and the reduced average extension rates. Moreover, abasic site at DNA fork inhibited the binding of DNA polymerase or helicase onto fork and the binding between polymerase and helicase at fork. Notably and unexpectedly, we found DNA polymerase alone bypassed an abasic site on primer/template (P/T) substrate more efficiently than did polymerase and helicase complex bypass it at fork. The presence of gp2.5 further inhibited the abasic site bypass at DNA fork. Kinetic analysis showed that this inhibition at fork relative to that on P/T was due to the decreased fraction of productive complex instead of the average extension rates. Therefore, we found that protein interactions in T7 DNA replisome inhibited the bypass of DNA lesion, different from all the traditional concept that protein interactions or accessory proteins always promote DNA replication and DNA damage bypass, providing new insights in translesion DNA synthesis performed by DNA replisome.


1996 ◽  
Vol 271 (40) ◽  
pp. 24662-24669 ◽  
Author(s):  
Tamar Paz-Elizur ◽  
Masaru Takeshita ◽  
Myron Goodman ◽  
Michael O'Donnell ◽  
Zvi Livneh

Sign in / Sign up

Export Citation Format

Share Document