beta clamp
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 0)

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0241093
Author(s):  
Sandesh Acharya ◽  
Amol Dahal ◽  
Hitesh Kumar Bhattarai

The replication of DNA is an essential process in all domains of life. A protein often involved in replication is the sliding clamp. The sliding clamp encircles the DNA and helps replicative polymerase stay attached to the replication machinery increasing the processivity of the polymerase. In eukaryotes and archaea, the sliding clamp is called the Proliferating Cell Nuclear Antigen (PCNA) and consists of two domains. This PCNA forms a trimer encircling the DNA as a hexamer. In bacteria, the structure of the sliding clamp is highly conserved, but the protein itself, called beta clamp, contains three domains, which dimerize to form a hexamer. The bulk of literature touts a conservation of the structure of the sliding clamp, but fails to recognize the conservation of protein sequence among sliding clamps. In this paper, we have used PSI blast to the second iteration in NCBI to show a statistically significant sequence homology between Pyrococcus furiosus PCNA and Kallipyga gabonensis beta clamp. The last two domains of beta clamp align with the two domains of PCNA. This homology data demonstrates that PCNA and beta clamp arose from a common ancestor. In this paper, we have further used beta clamp and PCNA sequences from diverse bacteria, archaea and eukarya to build maximum likelihood phylogenetic tree. Most, but not all, species in different domains of life harbor one sliding clamp from vertical inheritance. Some of these species that have two or more sliding clamps have acquired them from gene duplication or horizontal gene transfer events.


2020 ◽  
Author(s):  
Sandesh Acharya ◽  
Amol Dahal ◽  
Hitesh Kumar Bhattarai

AbstractReplication of DNA is an essential process in all domains of life. A protein often involved without exception in replication is the sliding clamp. The sliding clamp encircles the DNA and helps replicative polymerase stay attached to the replication machinery increasing the processivity of the polymerase. In eukaryotes and archaea the sliding clamp is called the Proliferating Cell Nuclear Antigen (PCNA) and consists of two domains. This PCNA forms a trimer encircling the DNA as a hexamer. In bacteria, the structure of the sliding clamp is highly conserved, but the protein itself, called beta clamp, contains three domains, which dimerize to form a hexamer. The bulk of literature touts a conservation of the structure of the sliding clamp, but fails to recognize conservation of protein sequence among sliding clamps. In this paper we have used PSI blast to the second interation in NCBI to show a statistically significant sequence homology between Pyrococcus furiosus PCNA and Kallipyga gabonensis beta clamp. The last two domains of beta clamp align with the two domains of PCNA. This homology data demonstrates that PCNA and beta clamp arose from a common ancestor. In this paper, we have further used beta clamp and PCNA sequences from diverse bacteria, archaea and eukarya to build maximum likelihood phylogenetic tree. Most, but not all, species in different domains of life harbor one sliding clamp from vertical inheritance. Some of these species that have two or more sliding clamps have acquired them from gene duplication or horizontal gene transfer events.


2009 ◽  
Vol 191 (19) ◽  
pp. 5910-5920 ◽  
Author(s):  
Penny J. Beuning ◽  
Sarah Chan ◽  
Lauren S. Waters ◽  
Haripriya Addepalli ◽  
Jaylene N. Ollivierre ◽  
...  

ABSTRACT Translesion synthesis is a DNA damage tolerance mechanism by which damaged DNA in a cell can be replicated by specialized DNA polymerases without being repaired. The Escherichia coli umuDC gene products, UmuC and the cleaved form of UmuD, UmuD′, comprise a specialized, potentially mutagenic translesion DNA polymerase, polymerase V (UmuD′2C). The full-length UmuD protein, together with UmuC, plays a role in a primitive DNA damage checkpoint by decreasing the rate of DNA synthesis. It has been proposed that the checkpoint is manifested as a cold-sensitive phenotype that is observed when the umuDC gene products are overexpressed. Elevated levels of the beta processivity clamp along with elevated levels of the umuDC gene products, UmuD′C, exacerbate the cold-sensitive phenotype. We used this observation as the basis for genetic selection to identify two alleles of umuD′ and seven alleles of umuC that do not exacerbate the cold-sensitive phenotype when they are present in cells with elevated levels of the beta clamp. The variants were characterized to determine their abilities to confer the umuD′C-specific phenotype UV-induced mutagenesis. The umuD variants were assayed to determine their proficiencies in UmuD cleavage, and one variant (G129S) rendered UmuD noncleaveable. We found at least two UmuC residues, T243 and L389, that may further define the beta binding region on UmuC. We also identified UmuC S31, which is predicted to bind to the template nucleotide, as a residue that is important for UV-induced mutagenesis.


1991 ◽  
Vol 266 (17) ◽  
pp. 11328-11334 ◽  
Author(s):  
P.T. Stukenberg ◽  
P.S. Studwell-Vaughan ◽  
M. O'Donnell

Sign in / Sign up

Export Citation Format

Share Document