scholarly journals Massive ex Vivo Expansion of Human Natural Regulatory T Cells (Tregs) with Minimal Loss of in Vivo Functional Activity

2011 ◽  
Vol 3 (83) ◽  
pp. 83ra41-83ra41 ◽  
Author(s):  
K. L. Hippen ◽  
S. C. Merkel ◽  
D. K. Schirm ◽  
C. M. Sieben ◽  
D. Sumstad ◽  
...  
2018 ◽  
Author(s):  
Nicholas Borcherding ◽  
Kawther K. Ahmed ◽  
Andrew P. Voigt ◽  
Ajaykumar Vishwakarma ◽  
Ryan Kolb ◽  
...  

Regulatory T cells (Tregs) are a population of T cells that exert a suppressive effect on a variety of immune cells and non-immune cells. The suppressive effects of Tregs are detrimental to anti-tumor immunity. Recent investigations into cancer-associated Tregs have identified common expression patterns for tumor-infiltration, however the functional heterogeneity in tumor-infiltrating (TI) Treg is largely unknown. We performed single-cell sequencing on immune cells derived from renal clear cell carcinoma (ccRCC) patients, isolating 160 peripheral-blood (PB) Tregs and 574 TI Tregs. We identified distinct transcriptional TI Treg cell fates, with a suppressive subset expressing CD177. We demonstrate CD177+ TI-Tregs have preferential suppressive effects in vivo and ex vivo. Gene signatures derived the CD177+ Treg subset had superior ability to predict survival in ccRCC and seven other cancer types. Further investigation into the development and regulation of TI-Treg heterogeneity will be vital to the application of tumor immunotherapies that possess minimal side effects.


Cytotherapy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. S135-S136
Author(s):  
V. Roobrouck ◽  
J. Beyens ◽  
E. Van Houtven ◽  
J. Reading ◽  
C. Hull ◽  
...  

2006 ◽  
Vol 18 (2) ◽  
pp. 103-110 ◽  
Author(s):  
Emma L. Masteller ◽  
Qizhi Tang ◽  
Jeffrey A. Bluestone

2020 ◽  
Vol 16 (S2) ◽  
Author(s):  
Alireza Faridar ◽  
Aaron Thome ◽  
Weihua Zhao ◽  
Jason R Thonhoff ◽  
David Beers ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2180-2180
Author(s):  
Tokiko Nagamura-Inoue ◽  
Seiichiro Kobayashi ◽  
Kazuo Ogami ◽  
Yuki Yamamoto ◽  
Kiyoko Izawa ◽  
...  

Abstract Abstract 2180 Background: Regulatory T cells (Tregs) play an important role in immune-tolerance to allograft. Cord blood (CB) is rich in naïve T cells and is a promising source of inducible Tregs (iTregs), since it was reported that stable iTregs may be derived exclusively from naïve T cells. However, the standard method for iTregs has not yet been established. Here we studied the impact of mTOR inhibitors, rapamycin (Rap) and everolimus (Eve), on ex vivo expansion of iTregs from CB-CD4+ T cells. Methods: CB-CD4+ T cell were isolated using anti-CD4 monoclonal antibody (MAb)-conjugated magnetic beads, and cultured in a flask coated with anti-CD3/CD28 MAbs and supplemented with IL-2 and TGF-β in the presence or absence of Rap or Eve. After two weeks of culture, the total number of CD4+ T cells was calculated, and the incidence of CD25+Foxp3+ cell population among those was estimated by FACS. Results and Discussions: Both Rap and Eve significantly increased the incidence of CD25+Foxp3+ cell population in CD4+ T cells. However, Rap apparently inhibited their growth and did not increase the absolute number of CD25+Foxp3+ cells in comparison to the control. On the other hand, Eve contributed to efficient expansion of iTregs at the concentration between 1 and 50ng/ml without no significant inhibition of their growth. Expansion of CD4+ T cells with TGF-β and Eve yielded 71.5 ±23.5% purity of CD25+Foxp3+ cells which also expressed CTLA-4 as well as the memory phenotype, while the purity obtained with TGF-β only was 47.4±30.0% and that without TGF-β/Eve was 7.3±4.5%. Thus, an average of 2.95±2.8 x107 iTregs were obtained from the initial input of 5×104 CD4+ T cells. The resulting iTregs with TGF-β, TGF-β/Rap and TGF-β/Eve inhibited the proliferation of CFSE-labeled T cells stimulated with allogeneic dendritic cells. The precise mechanism for Foxp3 induction by mTOR inhibitors still remains to be elucidated. Furthermore, we found that expression of CD26 (DPP-IV) was significantly down-regulated in CD4+ T cells expanded with TGF-β and profoundly with TGF-β/Eve, while CD127 was negative after culture in all the conditions. Mean fluorescence intensity of CD26 indicated 67.5 in CD4+ T cells without TGF-β, 1.58 with TGF-β, 0.18 with TGF-β/Rap and 0.12 with TGF-β/Eve, respectively. Accordingly, CD26 negativity may be an indicator of iTregs together with Foxp3. Conclusion: mTOR inhibitor, Eve, is an efficient co-inducer of iTregs and applicable to ex vivo expansion of iTregs in a clinical setting. Disclosures: No relevant conflicts of interest to declare.


2010 ◽  
Vol 136 (3) ◽  
pp. 329-337 ◽  
Author(s):  
Tinghua Cao ◽  
Sally E. Wenzel ◽  
William A. Faubion ◽  
Gregory Harriman ◽  
Li Li

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 812-812 ◽  
Author(s):  
Emanuela I Sega ◽  
Dennis Leveson-Gower ◽  
Vu H. Nguyen ◽  
Robert Negrin

Abstract Graft versus host disease (GVHD) is a major complication of hematopoietic stem cell transplantation resulting from donor T cell reactivity against host tissue antigens. CD4+CD25+Foxp3+ regulatory T cells (Treg) are known to be important in maintaining self tolerance and preventing autoimmunity. Using murine models of acute GVHD in which allogeneic bone marrow cells are transplanted into lethally irradiated hosts, we and others have shown that donor Treg are able to suppress GVHD induced by donor allogeneic T cells and dramatically improve survival. Treg are rare and suppression of GVHD requires adequate numbers of Treg in relation to the number of conventional T cells (Tcon). To overcome this problem, expansion of Treg has been performed, however there has not been a head to head comparison of the function of expanded vs fresh Treg. Highly purified CD4+CD25+Foxp3+ T cells (>98% purity) were expanded using anti-CD3/anti-CD28 dynabeads and 1000 U/ml IL-2. Under these conditions, after five days Treg expanded up to 13 fold while maintaining high Foxp3 expression levels (85–90%). Longer expansion periods result in more T cell expansion but an overgrowth of Foxp3 negative T cells. In a mixed lymphocyte reaction assay, the ex-vivo expanded Treg efficiently suppressed the proliferation of alloreactive T cells. The expanded Treg were evaluated in an in vivo acute GVHD mouse model in direct comparison with freshly isolated Treg using a novel bioluminescent imaging assay that allowed for assessment of Tcon proliferation in addition to traditional metrics of GVHD severity including weight gain, survival and GVHD score. Initial experiments show that, similar to freshly isolated Treg, the ex-vivo expanded Treg suppress GVHD symptoms and improve survival, although a greater number of expanded Treg were required comparable to freshly isolated Treg. The mean GVHD score for the Tcon alone group was 5.8±1.02. Fresh Treg added at 1:1 ratio decreased the GVHD score to 0.75±0.25 (p=0.0036). Ex-vivo expanded Treg demonstrated a dose-dependent decrease in GVHD score, although four times more expanded Treg were needed to obtain a similar reduction in GVHD score (0.50±0.5, p=0.0036). This observed difference in potency was not due to the ex-vivo expanded Treg being short-lived when infused in mice. Bioluminescence imaging of luciferase positive (luc+) cultured Treg showed the same in vivo persistence as freshly isolated Treg. The ability to expand ex-vivo generated Treg is greater than the difference in potency, making ex-vivo expanded Treg potentially a viable option for treatment of GVHD, however, increased ratios of Treg:Tcon are likely to be required.


Sign in / Sign up

Export Citation Format

Share Document