The importance of Integrated Pest Management to flatten the huanglongbing (HLB) curve and limit its vector, the Asian citrus psyllid

Author(s):  
Adriano G. Garcia ◽  
Josemeri A. Jamielniak ◽  
Alexandre J.F. Diniz ◽  
José R.P. Parra
2018 ◽  
Vol 28 (5) ◽  
pp. 684-691
Author(s):  
Augusto Ramírez-Godoy ◽  
María del Pilar Vera-Hoyos ◽  
Natalia Jiménez-Beltrán ◽  
Hermann Restrepo-Díaz

Asian citrus psyllid [ACP (Diaphorina citri)] is one of the most serious threats to the global citrus (Citrus sp.) culture, and management of ACP has depended primarily on the application of chemical insecticides. The expression of resistance mechanisms to herbivory is a key component in integrated pest management in crop production in which silicon (Si) applications can play an important role in plant–insect relationships. The objective of the current study was to evaluate the application of Si to tahiti lime (Citrus latifolia) plants under natural infestations of ACP. Two experiments were conducted using 15-month-old seedlings and 2-year-old trees, respectively. Treatments were 1) foliar Si sprays (potassium silicate) at a dose of 2 mL·L–1, 2) soil Si application at a dose of 1 kg commercial product per plant, 3) combined soil and foliar applications of Si at the doses just listed, and 4) untreated plants (control). The application of Si treatments to both seedlings and trees affected ACP oviposition, causing a reduction of 60%. Applications of Si did not affect the nutritional status (macronutrients and micronutrients) of plants in either test, except that the foliar concentration of Si tended to be greater in the soil and soil + foliar treatments than in the other treatment in both seedlings and trees. Based on these results, we suggest that Si can be added as a component of ACP integrated pest management programs.


EDIS ◽  
2007 ◽  
Vol 2007 (11) ◽  
Author(s):  
Michael E. Rogers ◽  
Philip A. Stansly

ENY-739, a 7-page illustrated fact sheet by Michael E. Rogers and Philip A. Stansly, provides information about the biology of this vector of citrus greening disease to aid growers in implementing integrated pest management (IPM) practices for suppressing the population in citrus-growing areas of Florida. It includes sections on identification and biology, psyllid feeding damage, pathogen transmission, management, and selected references. Published by the UF Department of Entomology and Nematology, June 2006.


HortScience ◽  
2018 ◽  
Vol 53 (10) ◽  
pp. 1453-1460
Author(s):  
Augusto Ramírez-Godoy ◽  
María del Pilar Vera-Hoyos ◽  
Natalia Jiménez-Beltrán ◽  
Hermann Restrepo-Díaz

Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is the most serious threat to the global citrus industry, and its management has mainly depended on the application of chemical insecticides. The use of biopesticides can play an important role in regulating this pest. In a first test, two separate experiments were conducted in two different municipalities (Apulo and Jerusalen, Cundinamarca, Colombia) to evaluate the effect of foliar Beauveria bassiana and imidacloprid sprays on ACP populations in 2015 and 2016, respectively. In a second test, two separate tests were carried out in commercial Tahiti lime orchards to evaluate the efficacy of three different commercial biopesticides (Beauveria bassiana and extracts of Sophora sp. and garlic-chili pepper). In test 1, imidacloprid-treated trees showed a reduction (60% and 80%) in cumulative ACP adults in 2016. ACP cumulative nymphs were also diminished by foliar imidacloprid and B. bassiana application, between 40% and 65% in 2015 and 2016, respectively. ACP cumulative eggs showed lower individuals in imidacloprid-treated flushes at 3 and 4 weeks after treatment 9 (WAT) in 2016. In test 2, the results obtained showed ACP adults and eggs unaffected by biopesticide treatments; nymphs were reduced 50% to 75% in trees treated with the three biopesticides in comparison with control trees. All three biopesticides tested can be considered useful tools in integrated pest management (IPM) programs for ACP, since these products reduced immature ACP individuals between 50% and 75% under field conditions.


Author(s):  
J. R. Adams ◽  
G. J Tompkins ◽  
A. M. Heimpel ◽  
E. Dougherty

As part of a continual search for potential pathogens of insects for use in biological control or on an integrated pest management program, two bacilliform virus-like particles (VLP) of similar morphology have been found in the Mexican bean beetle Epilachna varivestis Mulsant and the house cricket, Acheta domesticus (L. ).Tissues of diseased larvae and adults of E. varivestis and all developmental stages of A. domesticus were fixed according to procedures previously described. While the bean beetles displayed no external symptoms, the diseased crickets displayed a twitching and shaking of the metathoracic legs and a lowered rate of activity.Examinations of larvae and adult Mexican bean beetles collected in the field in 1976 and 1977 in Maryland and field collected specimens brought into the lab in the fall and reared through several generations revealed that specimens from each collection contained vesicles in the cytoplasm of the midgut filled with hundreds of these VLP's which were enveloped and measured approximately 16-25 nm x 55-110 nm, the shorter VLP's generally having the greater width (Fig. 1).


2019 ◽  
Vol 30 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Elizabeth H. Beers ◽  
Adrian Marshall ◽  
Jim Hepler ◽  
Josh Milnes

2004 ◽  
Vol 10 (3) ◽  
pp. 22-25
Author(s):  
Sally Y. Shelton ◽  
John E. Simmons ◽  
Tom J.K. Strang

Sign in / Sign up

Export Citation Format

Share Document