scholarly journals Phylogenetic Diversity of Bacterial and Archaeal Communities in the Anoxic Zone of the Cariaco Basin

2001 ◽  
Vol 67 (4) ◽  
pp. 1663-1674 ◽  
Author(s):  
Vanessa M. Madrid ◽  
Gordon T. Taylor ◽  
Mary I. Scranton ◽  
Andrei Y. Chistoserdov

ABSTRACT Microbial community samples were collected from the anoxic zone of the Cariaco Basin at depths of 320, 500, and 1,310 m on a November 1996 cruise and were used to construct 16S ribosomal DNA libraries. Of 60 nonchimeric sequences in the 320-m library, 56 belonged to the ɛ subdivision of the Proteobacteria(ɛ-Proteobacteria) and 53 were closely related to ectosymbionts of Rimicaris exoculata and Alvinella pompejana, which are referred to here as epsilon symbiont relatives (ESR). The 500-m library contained sequences affiliated with the fibrobacteria, the Flexibacter-Cytophaga-Bacteroidesdivision, the division Verrucomicrobia, the divisionProteobacteria, and the OP3 candidate division. The Proteobacteria included members of the γ, δ, ɛ and new candidate subdivisions, and γ-proteobacterial sequences were dominant (25.6%) among the proteobacterial sequences. As in the 320-m library, the majority of the ɛ-proteobacteria belonged to the ESR group. The genusFibrobacter and its relatives were the second largest group in the library (23.6%), followed by the δ-proteobacteria and the ɛ-proteobacteria. The 1,310-m library had the greatest diversity; 59 nonchimeric clones in the library contained 30 unique sequences belonging to the planctomycetes, the fibrobacteria, theFlexibacter-Cytophaga-Bacteroides division, theProteobacteria, and the OP3 and OP8 candidate divisions. The proteobacteria included members of new candidate subdivisions and the β, γ, δ, and ɛ-subdivisions. ESR sequences were still present in the 1,310-m library but in a much lower proportion (8.5%). One archaeal sequence was present in the 500-m library (2% of all microorganisms in the library), and eight archaeal sequences were present in the 1,310-m library (13.6%). All archaeal sequences fell into two groups; two clones in the 1,310-m library belonged to the kingdom Crenarchaeota and the remaining sequences in both libraries belonged to the kingdom Euryarchaeota. The latter group appears to be related to the Eel-TA1f2 sequence, which belongs to an archaeon suggested to be able to oxidize methane anaerobically. Based on phylogenetic inferences and measurements of dark CO2 fixation, we hypothesized that (i) the ESR are autotrophic anaerobic sulfide oxidizers, (ii) sulfate reduction and fermentative metabolism may be carried out by a large number of bacteria in the 500- and 1,310-m libraries, and (iii) members of theEuryarchaeota found in relatively large numbers in the 1,310-m library may be involved in anaerobic methane oxidation. Overall, the composition of microbial communities from the Cariaco Basin resembles the compositions of communities from several anaerobic sediments, supporting the hypothesis that the Cariaco Basin water column is similar to anaerobic sediments.

Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 550 ◽  
Author(s):  
Huili Feng ◽  
Jiahuan Guo ◽  
Weifeng Wang ◽  
Xinzhang Song ◽  
Shuiqiang Yu

Understanding the composition and diversity of soil microorganisms that typically mediate the soil biogeochemical cycle is crucial for estimating greenhouse gas flux and mitigating global changes in plantation forests. Therefore, the objectives of this study were to investigate changes in diversity and relative abundance of bacteria and archaea with soil profiles and the potential factors influencing the vertical differentiation of microbial communities in a poplar plantation. We investigated soil bacterial and archaeal community compositions and diversities by 16S rRNA gene Illumina MiSeq sequencing at different depths of a poplar plantation forest in Chenwei forest farm, Sihong County, Jiangsu, China. More than 882,422 quality-filtered 16S rRNA gene sequences were obtained from 15 samples, corresponding to 34 classified phyla and 68 known classes. Ten major bacterial phyla and two archaeal phyla were found. The diversity of bacterial and archaeal communities decreased with depth of the plantation soil. Analysis of variance (ANOVA) of relative abundance of microbial communities exhibited that Nitrospirae, Verrucomicrobia, Latescibacteria, GAL15, SBR1093, and Euryarchaeota had significant differences at different depths. The transition zone of the community composition between the surface and subsurface occurred at 10–20 cm. Overall, our findings highlighted the importance of depth with regard to the complexity and diversity of microbial community composition in plantation forest soils.


2016 ◽  
Vol 94 (suppl_2) ◽  
pp. 53-54 ◽  
Author(s):  
A. L. Knoell ◽  
C. L. Anderson ◽  
A. C. Pesta ◽  
G. E. Erickson ◽  
T. J. Klopfenstein ◽  
...  

2010 ◽  
Vol 5 (3) ◽  
pp. 389-402 ◽  
Author(s):  
Frank Rasche ◽  
Daniela Knapp ◽  
Christina Kaiser ◽  
Marianne Koranda ◽  
Barbara Kitzler ◽  
...  

Anaerobe ◽  
2019 ◽  
Vol 59 ◽  
pp. 145-153 ◽  
Author(s):  
E.A.F. Vasconcelos ◽  
S.T. Santaella ◽  
M.B. Viana ◽  
A.B. dos Santos ◽  
G.C. Pinheiro ◽  
...  

2013 ◽  
Vol 143 ◽  
pp. 512-518 ◽  
Author(s):  
Jiang-Tao Qiao ◽  
Yan-Ling Qiu ◽  
Xian-Zheng Yuan ◽  
Xiao-Shuang Shi ◽  
Xiao-Hui Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document