A Genome-Wide Screen Reveals that the Vibrio cholerae Phosphoenolpyruvate Phosphotransferase System Modulates Virulence Gene Expression
Diverse environmental stimuli and a complex network of regulatory factors are known to modulate expression ofVibrio cholerae's principal virulence factors. However, there is relatively little known about how metabolic factors impinge upon the pathogen's well-characterized cascade of transcription factors that induce expression of cholera toxin and the toxin-coregulated pilus (TCP). Here, we used a transposon insertion site (TIS) sequencing-based strategy to identify new factors required for expression oftcpA, which encodes the major subunit of TCP, the organism's chief intestinal colonization factor. Besides identifying most of the genes known to modulatetcpAexpression, the screen yieldedptsIandptsH, which encode the enzyme I (EI) and Hpr components of theV. choleraephosphoenolpyruvate phosphotransferase system (PTS). In addition to reduced expression of TcpA, strains lacking EI, Hpr, or the associated EIIAGlcprotein produced less cholera toxin (CT) and had a diminished capacity to colonize the infant mouse intestine. The PTS modulates virulence gene expression by regulating expression oftcpPHandaphAB, which themselves control expression oftoxT, the central activator of virulence gene expression. One mechanism by which PTS promotes virulence gene expression appears to be by modulating the amounts of intracellular cyclic AMP (cAMP). Our findings reveal that theV. choleraePTS is an additional modulator of the ToxT regulon and demonstrate the potency of loss-of-function TIS sequencing screens for defining regulatory networks.