scholarly journals A Genome-Wide Screen Reveals that the Vibrio cholerae Phosphoenolpyruvate Phosphotransferase System Modulates Virulence Gene Expression

2015 ◽  
Vol 83 (9) ◽  
pp. 3381-3395 ◽  
Author(s):  
Qiyao Wang ◽  
Yves A. Millet ◽  
Michael C. Chao ◽  
Jumpei Sasabe ◽  
Brigid M. Davis ◽  
...  

Diverse environmental stimuli and a complex network of regulatory factors are known to modulate expression ofVibrio cholerae's principal virulence factors. However, there is relatively little known about how metabolic factors impinge upon the pathogen's well-characterized cascade of transcription factors that induce expression of cholera toxin and the toxin-coregulated pilus (TCP). Here, we used a transposon insertion site (TIS) sequencing-based strategy to identify new factors required for expression oftcpA, which encodes the major subunit of TCP, the organism's chief intestinal colonization factor. Besides identifying most of the genes known to modulatetcpAexpression, the screen yieldedptsIandptsH, which encode the enzyme I (EI) and Hpr components of theV. choleraephosphoenolpyruvate phosphotransferase system (PTS). In addition to reduced expression of TcpA, strains lacking EI, Hpr, or the associated EIIAGlcprotein produced less cholera toxin (CT) and had a diminished capacity to colonize the infant mouse intestine. The PTS modulates virulence gene expression by regulating expression oftcpPHandaphAB, which themselves control expression oftoxT, the central activator of virulence gene expression. One mechanism by which PTS promotes virulence gene expression appears to be by modulating the amounts of intracellular cyclic AMP (cAMP). Our findings reveal that theV. choleraePTS is an additional modulator of the ToxT regulon and demonstrate the potency of loss-of-function TIS sequencing screens for defining regulatory networks.

2017 ◽  
Vol 199 (7) ◽  
Author(s):  
Gabriela Kovacikova ◽  
Wei Lin ◽  
Ronald K. Taylor ◽  
Karen Skorupski

ABSTRACT FadR is a master regulator of fatty acid (FA) metabolism that coordinates the pathways of FA degradation and biosynthesis in enteric bacteria. We show here that a ΔfadR mutation in the El Tor biotype of Vibrio cholerae prevents the expression of the virulence cascade by influencing both the transcription and the posttranslational regulation of the master virulence regulator ToxT. FadR is a transcriptional regulator that represses the expression of genes involved in FA degradation, activates the expression of genes involved in unsaturated FA (UFA) biosynthesis, and also activates the expression of two operons involved in saturated FA (SFA) biosynthesis. Since FadR does not bind directly to the toxT promoter, we determined whether the regulation of any of its target genes indirectly influenced ToxT. This was accomplished by individually inserting a double point mutation into the FadR-binding site in the promoter of each target gene, thereby preventing their activation or repression. Although preventing FadR-mediated activation of fabA, which encodes the enzyme that carries out the first step in UFA biosynthesis, did not significantly influence either the transcription or the translation of ToxT, it reduced its levels and prevented virulence gene expression. In the mutant strain unable to carry out FadR-mediated activation of fabA, expressing fabA ectopically restored the levels of ToxT and virulence gene expression. Taken together, the results presented here indicate that V. cholerae FadR influences the virulence cascade in the El Tor biotype by modulating the levels of ToxT via two different mechanisms. IMPORTANCE Fatty acids (FAs) play important roles in membrane lipid homeostasis and energy metabolism in all organisms. In Vibrio cholerae, the causative agent of the acute intestinal disease cholera, they also influence virulence by binding into an N-terminal pocket of the master virulence regulator, ToxT, and modulating its activity. FadR is a transcription factor that coordinately controls the pathways of FA degradation and biosynthesis in enteric bacteria. This study identifies a new link between FA metabolism and virulence in the El Tor biotype by showing that FadR influences both the transcription and posttranslational regulation of the master virulence regulator ToxT by two distinct mechanisms.


2000 ◽  
Vol 182 (15) ◽  
pp. 4295-4303 ◽  
Author(s):  
Melinda B. Nye ◽  
James D. Pfau ◽  
Karen Skorupski ◽  
Ronald K. Taylor

ABSTRACT H-NS is an abundant nucleoid-associated protein involved in the maintenance of chromosomal architecture in bacteria. H-NS also has a role in silencing the expression of a variety of environmentally regulated genes during growth under nonpermissive conditions. In this study we demonstrate a role for H-NS in the negative modulation of expression of several genes within the ToxR virulence regulon ofVibrio cholerae. Deletion of hns resulted in high, nearly constitutive levels of expression of the genes encoding cholera toxin, toxin-coregulated pilus, and the ToxT virulence gene regulatory protein. For the cholera toxin- and ToxT-encoding genes, elevated expression in an hns mutant was found to occur in the absence of the cognate activator proteins, suggesting that H-NS functions directly at these promoters to decrease gene expression. Deletion analysis of the region upstream of toxT suggests that an extensive region located far upstream of the transcriptional start site is required for complete H-NS-mediated repression of gene expression. These data indicate that H-NS negatively influences multiple levels of gene expression within the V. choleraevirulence cascade and raise the possibility that the transcriptional activator proteins in the ToxR regulon function to counteract the repressive effects of H-NS at the various promoters as well as to recruit RNA polymerase.


mBio ◽  
2013 ◽  
Vol 4 (5) ◽  
Author(s):  
X. Renee Bina ◽  
Dawn L. Taylor ◽  
Amit Vikram ◽  
Vanessa M. Ante ◽  
James E. Bina

ABSTRACTVibrio choleraeis an aquatic organism that causes the severe acute diarrheal disease cholera. The ability ofV. choleraeto cause disease is dependent upon the production of two critical virulence determinants, cholera toxin (CT) and the toxin-coregulated pilus (TCP). The expression of the genes that encode for CT and TCP production is under the control of a hierarchical regulatory system called the ToxR regulon, which functions to activate virulence gene expression in response toin vivostimuli. Cyclic dipeptides have been found to be produced by numerous bacteria, yet their biological function remains unknown.V. choleraehas been shown to produce cyclo(Phe-Pro). Previous studies in our laboratory demonstrated that cyclo(Phe-Pro) inhibitedV. choleraevirulence factor production. For this study, we report on the mechanism by which cyclo(Phe-Pro) inhibited virulence factor production. We have demonstrated that exogenous cyclo(Phe-Pro) activated the expression ofleuO, a LysR-family regulator that had not been previously associated withV. choleraevirulence. IncreasedleuOexpression repressedaphAtranscription, which resulted in downregulation of the ToxR regulon and attenuated CT and TCP production. The cyclo(Phe-Pro)-dependent induction ofleuOexpression was found to be dependent upon the virulence regulator ToxR. Cyclo(Phe-Pro) did not affecttoxRtranscription or ToxR protein levels but appeared to enhance the ToxR-dependent transcription ofleuO. These results have identifiedleuOas a new component of the ToxR regulon and demonstrate for the first time that ToxR is capable of downregulating virulence gene expression in response to an environmental cue.IMPORTANCEThe ToxR regulon has been a focus of cholera research for more than three decades. During this time, a model has emerged wherein ToxR functions to activate the expression ofVibrio choleraevirulence factors upon host entry.V. choleraeand other enteric bacteria produce cyclo(Phe-Pro), a cyclic dipeptide that we identified as an inhibitor ofV. choleraevirulence factor production. This finding suggested that cyclo(Phe-Pro) was a negative effector of virulence factor production and represented a molecule that could potentially be exploited for therapeutic development. In this work, we investigated the mechanism by which cyclo(Phe-Pro) inhibited virulence factor production. We found that cyclo(Phe-Pro) signaled through ToxR to activate the expression ofleuO, a new virulence regulator that functioned to repress virulence factor production. Our results have identified a new arm of the ToxR regulon and suggest that ToxR may play a broader role in pathogenesis than previously known.


2015 ◽  
Vol 197 (10) ◽  
pp. 1716-1725 ◽  
Author(s):  
Sarah C. Plecha ◽  
Jeffrey H. Withey

ABSTRACTThe Gram-negative curved bacillusVibrio choleraecauses the severe diarrheal illness cholera. During host infection, a complex regulatory cascade results in production of ToxT, a DNA-binding protein that activates the transcription of major virulence genes that encode cholera toxin (CT) and toxin-coregulated pilus (TCP). Previous studies have shown that bile and its unsaturated fatty acid (UFA) components reduce virulence gene expression and therefore are likely important signals upon entering the host. However, the mechanism for the bile-mediated reduction of TCP and CT expression has not been clearly defined. There are two likely hypotheses to explain this reduction: (i) UFAs decrease DNA binding by ToxT, or (ii) UFAs decrease dimerization of ToxT. The work presented here elucidates that bile or UFAs directly affect DNA binding by ToxT. UFAs, specifically linoleic acid, can enterV. choleraewhen added exogenously and are present in the cytoplasm, where they can then interact with ToxT. Electrophoretic mobility shift assays (EMSAs) with ToxT and various virulence promoters in the presence or absence of UFAs showed a direct reduction in ToxT binding to DNA, even in promoters with only one ToxT binding site. Virstatin, a synthetic ToxT inhibitor, was previously shown to reduce ToxT dimerization. Here we show that virstatin affects DNA binding only at ToxT promoters with two binding sites, unlike linoleic acid, which affects ToxT binding promoters having either one or two ToxT binding sites. This suggests a mechanism in which UFAs, unlike virstatin, do not affect dimerization but affect monomeric ToxT binding to DNA.IMPORTANCEVibrio choleraemust produce the major virulence factors cholera toxin (CT) and toxin-coregulated pilus (TCP) to cause cholera. CT and TCP production depends on ToxT, the major virulence transcription activator. ToxT activity is negatively regulated by unsaturated fatty acids (UFAs) present in the lumen of the upper small intestine. This study investigated the mechanism for inhibition of ToxT activity by UFAs and found that UFAs directly reduce specific ToxT binding to DNA at virulence promoters and subsequently reduce virulence gene expression. UFAs inhibit ToxT monomers from binding DNA. This differs from the inhibitory mechanism of a synthetic ToxT inhibitor, virstatin, which inhibits ToxT dimerization. Understanding the mechanisms for inhibition of virulence could lead to better cholera therapeutics.


2015 ◽  
Vol 198 (3) ◽  
pp. 498-509 ◽  
Author(s):  
Sarah J. Morgan ◽  
Emily L. French ◽  
Joshua J. Thomson ◽  
Craig P. Seaborn ◽  
Christian A. Shively ◽  
...  

ABSTRACTTcpP and ToxR coordinately regulate transcription oftoxT, the master regulator of numerous virulence factors inVibrio cholerae. TcpP and ToxR are membrane-localized transcription factors, each with a periplasmic domain containing two cysteines. In ToxR, these cysteines form an intramolecular disulfide bond and a cysteine-to-serine substitution affects activity. We determined that the two periplasmic cysteines of TcpP also form an intramolecular disulfide bond. Disruption of this intramolecular disulfide bond by mutation of either cysteine resulted in formation of intermolecular disulfide bonds. Furthermore, disruption of the intramolecular disulfide bond in TcpP decreased the stability of TcpP. While the decreased stability of TcpP-C207S resulted in a nearly complete loss oftoxTactivation and cholera toxin (CT) production, the second cysteine mutant, TcpP-C218S, was partially resistant to proteolytic degradation and maintained ∼50%toxTactivation capacity. TcpP-C218S was also TcpH independent, since deletion oftcpHdid not affect the stability of TcpP-C218S, whereas wild-type TcpP was degraded in the absence of TcpH. Finally, TcpH was also unstable when intramolecular disulfides could not be formed in TcpP, suggesting that the single periplasmic cysteine in TcpH may assist with disulfide bond formation in TcpP by interacting with the periplasmic cysteines of TcpP. Consistent with this finding, a TcpH-C114S mutant was unable to stabilize TcpP and was itself unstable. Our findings demonstrate a periplasmic disulfide bond in TcpP is critical for TcpP stability and virulence gene expression.IMPORTANCETheVibrio choleraetranscription factor TcpP, in conjunction with ToxR, regulates transcription oftoxT, the master regulator of numerous virulence factors inVibrio cholerae. TcpP is a membrane-localized transcription factor with a periplasmic domain containing two cysteines. We determined that the two periplasmic cysteines of TcpP form an intramolecular disulfide bond and disruption of the intramolecular disulfide bond in TcpP decreased the stability of TcpP and reduced virulence gene expression. Normally TcpH, another membrane-localized periplasmic protein, protects TcpP from degradation. However, we found that TcpH was also unstable when intramolecular disulfides could not be formed in TcpP, indicating that the periplasmic cysteines of TcpP are required for functional interaction with TcpH and that this interaction is required for both TcpP and TcpH stability.


2018 ◽  
Vol 200 (8) ◽  
Author(s):  
Kevin D. Mlynek ◽  
William E. Sause ◽  
Derek E. Moormeier ◽  
Marat R. Sadykov ◽  
Kurt R. Hill ◽  
...  

ABSTRACTStaphylococcus aureussubverts innate defenses during infection in part by killing host immune cells to exacerbate disease. This human pathogen intercepts host cues and activates a transcriptional response via theS. aureusexoprotein expression (SaeR/SaeS [SaeR/S]) two-component system to secrete virulence factors critical for pathogenesis. We recently showed that the transcriptional repressor CodY adjusts nuclease (nuc) gene expression via SaeR/S, but the mechanism remained unknown. Here, we identified two CodY binding motifs upstream of thesaeP1 promoter, which suggested direct regulation by this global regulator. We show that CodY shares a binding site with the positive activator SaeR and that alleviating direct CodY repression at this site is sufficient to abrogate stochastic expression, suggesting that CodY repressessaeexpression by blocking SaeR binding. Epistasis experiments support a model that CodY also controlssaeindirectly through Agr and Rot-mediated repression of thesaeP1 promoter. We also demonstrate that CodY repression ofsaerestrains production of secreted cytotoxins that kill human neutrophils. We conclude that CodY plays a previously unrecognized role in controlling virulence gene expression via SaeR/S and suggest a mechanism by which CodY acts as a master regulator of pathogenesis by tying nutrient availability to virulence gene expression.IMPORTANCEBacterial mechanisms that mediate the switch from a commensal to pathogenic lifestyle are among the biggest unanswered questions in infectious disease research. Since the expression of most virulence genes is often correlated with nutrient depletion, this implies that virulence is a response to the lack of nourishment in host tissues and that pathogens likeS. aureusproduce virulence factors in order to gain access to nutrients in the host. Here, we show that specific nutrient depletion signals appear to be funneled to the SaeR/S system through the global regulator CodY. Our findings reveal a strategy by whichS. aureusdelays the production of immune evasion and immune-cell-killing proteins until key nutrients are depleted.


mSystems ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Amy Platenkamp ◽  
Jay L. Mellies

ABSTRACT Archetypal pathogenic bacterial strains are often used to elucidate regulatory networks of an entire pathovar, which encompasses multiple lineages and phylogroups. With enteropathogenic Escherichia coli (EPEC) as a model system, Hazen and colleagues (mSystems 6:e00024-17, 2017, https://doi.org/10.1128/mSystems.00024-17 ) used 9 isolates representing 8 lineages and 3 phylogroups to find that isolates with similar genomic sequences exhibit similarities in global transcriptomes under conditions of growth in medium that induces virulence gene expression, and they found variation among individual isolates. Archetypal pathogenic bacterial strains are often used to elucidate regulatory networks of an entire pathovar, which encompasses multiple lineages and phylogroups. With enteropathogenic Escherichia coli (EPEC) as a model system, Hazen and colleagues (mSystems 6:e00024-17, 2017, https://doi.org/10.1128/mSystems.00024-17 ) used 9 isolates representing 8 lineages and 3 phylogroups to find that isolates with similar genomic sequences exhibit similarities in global transcriptomes under conditions of growth in medium that induces virulence gene expression. They also found variation among individual isolates. Their work illustrates the importance of moving beyond observing regulatory phenomena of a limited number of regulons in a few archetypal strains, with the possibility of correlating clinical symptoms to key transcriptional pathways across lineages and phylogroups.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Aman Kumar ◽  
Vanessa Sperandio

ABSTRACTMicrobial establishment within the gastrointestinal (GI) tract requires surveillance of the gut biogeography. The gut microbiota coordinates behaviors by sensing host- or microbiota-derived signals. Here we show for the first time that microbiota-derived indole is highly prevalent in the lumen compared to the intestinal tissue. This difference in indole concentration plays a key role in modulating virulence gene expression of the enteric pathogens enterohemorrhagicEscherichia coli(EHEC) andCitrobacter rodentium. Indole decreases expression of genes within the locus of enterocyte effacement (LEE) pathogenicity island, which is essential for these pathogens to form attaching and effacing (AE) lesions on enterocytes. We synthetically altered the concentration of indole in the GI tracts of mice by employing mice treated with antibiotics to deplete the microbiota and reconstituted with indole-producing commensalBacteroides thetaiotaomicron(B. theta) or aB. thetaΔtnaAmutant (does not produce indole) or by engineering an indole-producingC. rodentiumstrain. This allowed us to assess the role of self-produced versus microbiota-produced indole, and the results show that decreased indole concentrations promote bacterial pathogenesis, while increased levels of indole decrease bacterial virulence gene expression. Moreover, we identified the bacterial membrane-bound histidine sensor kinase (HK) CpxA as an indole sensor. Enteric pathogens sense a gradient of indole concentrations in the gut to probe different niches and successfully establish an infection.IMPORTANCEPathogens sense and respond to several small molecules within the GI tract to modulate expression of their virulence repertoire. Indole is a signaling molecule produced by the gut microbiota. Here we show that indole concentrations are higher in the lumen, where the microbiota is present, than in the intestinal tissue. The enteric pathogens EHEC andC. rodentiumsense indole to downregulate expression of their virulence genes, as a read-out of the luminal compartment. We also identified the bacterial membrane-bound HK CpxA as an indole sensor. This regulation ensures that EHEC andC. rodentiumexpress their virulence genes only at the epithelial lining, which is the niche they colonize.


Sign in / Sign up

Export Citation Format

Share Document