scholarly journals Role of Capsule and Interleukin-6 in Long-Term Immune Control of Cryptococcus neoformans Infection by Specifically Activated Human Peripheral Blood Mononuclear Cells

2006 ◽  
Vol 74 (9) ◽  
pp. 5302-5310 ◽  
Author(s):  
Asna A. Siddiqui ◽  
Robin J. Shattock ◽  
Thomas S. Harrison

ABSTRACT Cryptococcus neoformans is a frequent cause of meningoencephalitis in immunosuppressed individuals. To better understand the mechanisms of a protective immune response to C. neoformans, a long-term in vitro model of human immune control of cryptococcal infection was developed. Peripheral blood mononuclear cells (PBMC) prestimulated with heat-killed C. neoformans significantly restricted the growth of C. neoformans after a subsequent live infection compared to that with unstimulated PBMC. Live infection with encapsulated C. neoformans was controlled for as long as 10 days, while infection with acapsular organisms could sometimes be eradicated. During immune control, fungal cells were both intracellular and extracellular within aggregates of mononuclear phagocytes and lymphocytes. Optimal immune control depended on the presence of both CD4+ and CD8+ T cells. Immune control of cryptococcal growth was more effective following prestimulation with acapsular compared with encapsulated organisms. Prestimulation with acapsular organisms was associated with a significant and prolonged increase in interleukin-6 (IL-6) production compared with prestimulation with encapsulated C. neoformans. Addition of IL-6 and depletion of CD25+ T cells prior to prestimulation and infection with encapsulated organisms resulted in reductions in cryptococcal growth that reached borderline statistical significance. Depletion of CD25+ T cells significantly reduced cryptococcal growth in wells with unstimulated PBMC. The results demonstrate an association between high levels of IL-6 and resistance to infection and, through suppression of IL-6 release, an additional mechanism whereby the cryptococcal capsule subverts a protective immune response. Further work is required to clarify the mechanism of action of IL-6 in this setting and any interaction with regulatory T cells.

2021 ◽  
Author(s):  
Bo Li ◽  
Chunmei Yang ◽  
Gui Ja ◽  
Yansheng Liu ◽  
Na Wang ◽  
...  

Abstract Human peripheral blood mononuclear cells (PBMCs) originate from hematopoietic stem cells (HSCs) in the bone marrow, which mainly includes lymphocytes (T cells, B cells, and natural killer [NK] cells) and monocytes. Cryopreserved PBMCs providing biobank resources are crucial for clinical application or scientific research. Here, we used flow cytometry to explore the influence of long-term cryopreservation on the quality of PBMCs with the aim of providing important evidence for the effective utilization of biobank resources. The PBMCs were isolated from the peripheral blood, which was collected from volunteers in the hospital. After long-term cryopreservation in liquid nitrogen, we analyzed the changes in cell numbers, viability, and multiple subtypes of PBMCs and studied the apoptosis, proliferation, activation, function, and status of T cells in comparison with freshly isolated PBMCs by flow cytometry, and then further tracked the effects of long-term cryopreservation on the same sample. Although the different cell types in the PBMCs dynamically changed compared with those in the freshly isolated samples, PBMC recovery and viability remained stable after long-term cryopreservation, and the number of most innate immune cells (e.g., monocytes and B cells) was significantly reduced compared to that of the freshly isolated PBMCs or long-term cryopreserved PBMCs; more importantly, the proportion of T cell subtypes, apoptosis, proliferation, and functional T cells, except for Tregs, were not affected by long-term cryopreservation. However, the proportions of activated T, naïve T, central memory T, effector T, and effector memory T cells dynamically changed after long-term cryopreservation. This article provides important evidence for the effective utilization of biobank resources. Long-term cryopreserved PBMCs can be partly used as biological resources for clinical research or basic studies, but the effect of cryopreservation on PBMCs should be considered when selecting cell samples, especially in research relating to activating or inhibiting function.


2018 ◽  
Vol 108 ◽  
pp. 1584-1590 ◽  
Author(s):  
Dominique Sternadt Alexandre-Ramos ◽  
Amandda Évelin Silva-Carvalho ◽  
Mariella Guimarães Lacerda ◽  
Teresa Raquel Tavares Serejo ◽  
Octávio Luiz Franco ◽  
...  

2004 ◽  
Vol 32 (02) ◽  
pp. 221-234 ◽  
Author(s):  
Andy Sun ◽  
Jean-San Chia ◽  
Won-Bo Wang ◽  
Chun-Pin Chiang

Recurrent aphthous ulcerations (RAU) represent a common oral mucosal disease with altered humoral and cellular immunities. In our institution, an immunomodulating agent, levamisole, is used to treat RAU with satisfactory therapeutic effect. Tien-Hsien liquid (THL) is an extract of Chinese medicinal herbs with immunomodulating effects. To test whether THL has immunomodulating effects on antigen-stimulated proliferation response (PR) of peripheral blood mononuclear cells (PBMC) and T-cells isolated from RAU patients and to test whether THL is a potential drug for treating RAU, PBMC or T-cells isolated from RAU patients were incubated with lipopolysaccharides (LPS) from Escherica coli, phytohemagglutinin (PHA), staphylococcal enterotoxin B (SEB), glutaraldehyde-inactivated tetanus toxoid (TT), glucosyltransferase D (GtfD), or antigens of Streptococcus mutans in the presence or absence of THL. We found that THL significantly increased the LPS-stimulated PR of PBMC from active RAU patients, the GtfD-stimulated PR of PBMC and of T-cells from inactive RAU patients, and the S. mutans-stimulated PR of PBMC from inactive RAU patients. However, THL could also significantly reduce the SEB-stimulated PR of PBMC and of T-cells from active RAU patients and S. mutans-stimulated PR of T-cells from active RAU patients. These results suggest that THL can modulate the antigen-stimulated PR of PBMC and T-cells from RAU patients. Therefore, it may be a potential immunoceutical agent for treatment of RAU.


2021 ◽  
Author(s):  
Guillaume Ricaud ◽  
Cathy Vaillancourt ◽  
Veronique Blais ◽  
Marjorie Disdier ◽  
Fabien Joao ◽  
...  

Intrauterine administration of autologous peripheral blood mononuclear cells (PBMC) has been recently proposed as new immunotherapy for patients with unexplained recurrent implantation failure (RIF). In these patients, administration of activated PBMC 24-h or 72-h before embryo transfer resulted in a 3-fold increase in biochemical pregnancy rate. In this study we evaluated the role of T cells to promotes human endometrial receptivity. On the day of ovulation, PBMC were isolated from and activated with T cells mitogen, the phytohemagglutinin (PHA) and hCG for 48-h in a conditioned culture medium. Distributions of CD4+ T cells were characterized in 157 patients by flow cytometry before and after PHA/hCG activation. Cytokine production was analyzed by cytometric beads array. We observed in RIF patients a significant decrease in Th2 and natural Treg cells before activation with PHA/hCG and an increase of Th17 cells after activation compared to intrauterine sperm insemination (IUI) and in vitro fertilization (IVF) groups. Furthermore, the hCG/PHA treatment increases anti-inflammatory T cells (Th2 and Treg cells) compared to non-treated T cells. Principal component analysis (PCA) performed on CD4 T cell subtypes revealed a different cellular profile in the RIF compared to the IUI and IVF groups. This inflammatory state change could explain how endometrium immunomodulation by hCG-activated PBMC helps patients with unexplained RIF to reach implantation.


Sign in / Sign up

Export Citation Format

Share Document