scholarly journals Phosphatidylinositol-Specific Phospholipase C Contributes to Survival of Staphylococcus aureus USA300 in Human Blood and Neutrophils

2014 ◽  
Vol 82 (4) ◽  
pp. 1559-1571 ◽  
Author(s):  
Mark J. White ◽  
Jeffrey M. Boyd ◽  
Alexander R. Horswill ◽  
William M. Nauseef

ABSTRACTStaphylococcus aureusis an important human pathogen that employs a large repertoire of secreted virulence factors to promote disease pathogenesis. Many strains ofS. aureuspossess aplcgene that encodes a phosphatidylinositol (PI)-specific phospholipase C (PI-PLC) capable of hydrolyzing PI and cleaving glycosyl-PI (GPI)-linked proteins from cell surfaces. Despite being secreted by virulent staphylococci, the contribution of PI-PLC to the capacity ofS. aureusto cause disease remains undefined. Our goal in these studies was to understand PI-PLC in the context ofS. aureusbiology. Among a collection of genetically diverse clinical isolates ofS. aureus, community-associated methicillin-resistantS. aureus(CA-MRSA) USA300 secreted the most PI-PLC. Screening a collection of two-component system (TCS) mutants ofS. aureus, we identified both theagrquorum-sensing system and the SrrAB TCS to be positive regulators ofplcgene expression. Real-time PCR and PI-PLC enzyme assays of the TCS mutants, coupled with SrrA promoter binding studies, demonstrated that SrrAB was the predominant transcriptional activator ofplc. Furthermore,plcregulation was linked to oxidative stress bothin vitroandin vivoin a SrrAB-dependent manner. A Δplcmutant in a CA-MRSA USA300 background exhibited a survival defect in human whole blood and in isolated neutrophils. However, the same mutant strain displayed no survival defect in murine models of infection or murine whole blood. Overall, these data identify potential links between bacterial responses to the host innate immune system and to oxidative stress and suggest how PI-PLC could contribute to the pathogenesis ofS. aureusinfections.

2009 ◽  
Vol 192 (1) ◽  
pp. 336-345 ◽  
Author(s):  
Anand Ballal ◽  
Adhar C. Manna

ABSTRACT Thioredoxin reductase (encoded by trxB) protects Staphylococcus aureus against oxygen or disulfide stress and is indispensable for growth. Among the different sarA family mutants analyzed, transcription of trxB was markedly elevated in the sarA mutant under conditions of aerobic as well as microaerophilic growth, indicating that SarA acts as a negative regulator of trxB expression. Gel shift analysis showed that purified SarA protein binds directly to the trxB promoter region DNA in vitro. DNA binding of SarA was essential for repression of trxB transcription in vivo in S. aureus. Northern blot analysis and DNA binding studies of the purified wild-type SarA and the mutant SarAC9G with oxidizing agents indicated that oxidation of Cys-9 reduced the binding of SarA to the trxB promoter DNA. Oxidizing agents, in particular diamide, could further enhance transcription of the trxB gene in the sarA mutant, suggesting the presence of a SarA-independent mode of trxB induction. Analysis of two oxidative stress-responsive sarA regulatory target genes, trxB and sodM, with various mutant sarA constructs showed a differential ability of the SarA to regulate expression of the two above-mentioned genes in vivo. The overall data demonstrate the important role played by SarA in modulating expression of genes involved in oxidative stress resistance in S. aureus.


2013 ◽  
Vol 81 (4) ◽  
pp. 1316-1324 ◽  
Author(s):  
Michael E. Olson ◽  
Tyler K. Nygaard ◽  
Laynez Ackermann ◽  
Robert L. Watkins ◽  
Oliwia W. Zurek ◽  
...  

ABSTRACTSeveral prominent bacterial pathogens secrete nuclease (Nuc) enzymes that have an important role in combating the host immune response. Early studies ofStaphylococcus aureusNuc attributed its regulation to theagrquorum-sensing system. However, recent microarray data have indicated thatnucis under the control of the SaeRS two-component system, which is a major regulator ofS. aureusvirulence determinants. Here we report that thenucgene is directly controlled by the SaeRS two-component system through reporter fusion, immunoblotting, Nuc activity measurements, promoter mapping, and binding studies, and additionally, we were unable identify a notable regulatory link to theagrsystem. The observed SaeRS-dependent regulation was conserved across a wide spectrum of representativeS. aureusisolates. Moreover, with community-associated methicillin-resistantS. aureus(CA MRSA) in a mouse model of peritonitis, we observedin vivoexpression of Nuc activity in an SaeRS-dependent manner and determined that Nuc is a virulence factor that is important forin vivosurvival, confirming the enzyme's role as a contributor to invasive disease. Finally, natural polymorphisms were identified in the SaeRS proteins, one of which was linked to Nuc regulation in a CA MRSA USA300 endocarditis isolate. Altogether, our findings demonstrate that Nuc is an importantS. aureusvirulence factor and part of the SaeRS regulon.


2019 ◽  
Vol 201 (21) ◽  
Author(s):  
Shanti Pandey ◽  
Gyan S. Sahukhal ◽  
Mohamed O. Elasri

ABSTRACT Staphylococcus aureus has evolved a complex regulatory network that controls a multitude of defense mechanisms against the deleterious effects of oxidative stress stimuli, subsequently leading to the pathogen’s survival and persistence in the hosts. Previously, we characterized the msaABCR operon as a regulator of virulence, antibiotic resistance, and the formation of persister cells in S. aureus. Deletion of the msaABCR operon resulted in the downregulation of several genes involved in resistance against oxidative stress. Notably, those included carotenoid biosynthetic genes and the ohr gene, which is involved in resistance against organic hydroperoxides. These findings led us to hypothesize that the msaABCR operon is involved in resisting oxidative stress generated in the presence of both H2O2 and organic hydroperoxides. Here, we report that a protein product of the msaABCR operon (MsaB) transcriptionally regulates the expression of the crtOPQMN operon and the ohr gene to resist in vitro oxidative stresses. In addition to its direct regulation of the crtOPQMN operon and ohr gene, we also show that MsaB is the transcriptional repressor of sarZ (repressor of ohr). Taken together, these results suggest that the msaABCR operon regulates an oxidative stress defense mechanism, which is required to facilitate persistent and recurrent staphylococcal infections. Moving forward, we plan to investigate the role of msaABCR in the persistence of S. aureus under in vivo conditions. IMPORTANCE This study shows the involvement of the msaABCR operon in resisting oxidative stress by Staphylococcus aureus generated under in vitro and ex vivo conditions. We show that MsaB regulates the expression and production of a carotenoid pigment, staphyloxanthin, which is a potent antioxidant in S. aureus. We also demonstrate that MsaB regulates the ohr gene, which is involved in defending against oxidative stress generated by organic hydroperoxides. This study highlights the importance of msaABCR in the survival of S. aureus in the presence of various environmental stimuli that mainly exert oxidative stress. The findings from this study indicate the possibility that msaABCR is involved in the persistence of staphylococcal infections and therefore could be a potential antimicrobial target to overcome recalcitrant staphylococcal infections.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1347.2-1347
Author(s):  
S. Y. Ki ◽  
H. Shin ◽  
Y. Lee ◽  
H. R. Bak ◽  
H. Yu ◽  
...  

Background:Janus kinases (JAK1, JAK2, JAK3, and TYK2) play critical roles in mediating various cytokine signaling, and has been developed as a target for autoimmune diseases such as RA. Tofacitinib, oral Pan-JAK inhibitor, demonstrated efficacy in RA patients, but its widespread use is limited by safety issues. Baricitinib, JAK1/2 inhibitor, is also known to interfere with the hematopoiesis system, such as anemia and thrombocytopenia associated with suppression of JAK2 signals. Therefore, it is necessary to develop a new potent compound that selectively inhibits JAK1 over JAK2, 3Objectives:To identify the pharmacological characteristic based on efficacy of CJ-15314 as potent and selective JAK1 inhibitor for treatment of autoimmune disease.Methods:In vitro, cell-based, kinase panel, Kd value and human whole blood assay were performed to determine the inhibition potency and selectivity for JAK subfamily kinases. In vivo therapeutic potential was evaluated by RA model including rat Adjuvant-Induced Arthritis (AIA) and collagen-induced arthritic (CIA). To confirm the possibility of further expansion into the autoimmune disease, BioMAP® Diversity PLUS® Panel was performed by discoverX.Results:In vitro assay, CJ-15314 inhibited JAK kinase family in a concentration-dependent manner with IC50 values of 3.8 nM against JAK1, Selectivity for JAK1 over JAK2, 3 was approximately 18, 83 fold greater for CJ-15314. In 1mM ATP condition, CJ-15314 has been confirmed to have the highest JAK1 selectivity over competing drugs, under 1 mM ATP condition that reflects the physiological environment in the body. Similarly, Kd values has also confirmed the selectivity of JAK1, which is 10 fold higher than JAK2, 3. Accordingly, in human whole blood assays, CJ-15314 is 11 fold more potent against IL-6 induced pSTAT1 inhibition through JAK1 (IC50 value: 70 nM) than GM-CSF-induced pSTAT5 inhibition (JAK2) whereas baricitinib and filgotinib exhibited only 2 fold and 7 fold respectively.In vivo efficacy model, CJ-15314 inhibited disease severity scores in a dose dependent manner. In the rat AIA model, CJ-15314 at 30 mg/kg dose showed 95.3% decrease in arthritis activity score, 51.2% in figotinib at 30 mg/kg, 97.7% showed baricitinib at 10 mg/kg. CJ-15314 showed superior anti-arthritic efficacy than filgotinib. CJ-15314 also minimally affected anemia-related parameters but not bricitinib end of the 2-week treatment. In the rat CIA model, like 10 mg/kg of bricitinib, 30 mg/kg of CJ-15314 also has a similar effect, with a significant reduction in histopathological scores.In biomap diversity panel, CJ-15314 inhibited the expression of genes such as MCP-1, VCAM-1, IP-10, IL-8, IL-1, sTNF-α and HLA-DR confirming the possibility of expansion into other diseases beyond arthritis.Conclusion:CJ-15314 is a highly selective JAK1 inhibitor, demonstrates robust efficacy in RA animal model and is good candidate for further development for inflammatory diseases.* CJ-15314 is currently conducting a phase I trial in south Korea.References:[1]Clark JD et al. Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J Med Chem. 2014; 57(12):5023-38.[2]Burmester GR et al. Emerging cell and cytokine targets in rheumatoid arthritis. Nat Rev Rheumatol. 2014; 10(2):77-88[3]Jean-Baptiste Telliez et al. Discovery of a JAK3-selective inhibitor: functional differentiation of JAK3-selective inhibition over pan-JAK or JAK1-selective inhibition. ACS Chem. Biol., 2016; 11 (12):3442-3451Disclosure of Interests:so young Ki Employee of: CJ healthcare, hyunwoo shin Employee of: CJ healthcare, yelim lee Employee of: CJ healthcare, Hyoung rok Bak Employee of: CJ healthcare, hana yu Employee of: CJ healthcare, Seung Chan Kim Employee of: CJ healthcare, juhyun lee Employee of: CJ healthcare, donghyun kim Employee of: CJ healthcare, Dong-hyun Ko Employee of: CJ Healthcare, dongkyu kim Employee of: CJ healthcare


2019 ◽  
Vol 202 (8) ◽  
Author(s):  
Courtney E. Price ◽  
Dustin G. Brown ◽  
Dominique H. Limoli ◽  
Vanessa V. Phelan ◽  
George A. O’Toole

ABSTRACT Cystic fibrosis (CF) patients chronically infected with both Pseudomonas aeruginosa and Staphylococcus aureus have worse health outcomes than patients who are monoinfected with either P. aeruginosa or S. aureus. We showed previously that mucoid strains of P. aeruginosa can coexist with S. aureus in vitro due to the transcriptional downregulation of several toxic exoproducts typically produced by P. aeruginosa, including siderophores, rhamnolipids, and HQNO (2-heptyl-4-hydroxyquinoline N-oxide). Here, we demonstrate that exogenous alginate protects S. aureus from P. aeruginosa in both planktonic and biofilm coculture models under a variety of nutritional conditions. S. aureus protection in the presence of exogenous alginate is due to the transcriptional downregulation of pvdA, a gene required for the production of the iron-scavenging siderophore pyoverdine as well as the downregulation of the PQS (Pseudomonas quinolone signal) (2-heptyl-3,4-dihydroxyquinoline) quorum sensing system. The impact of exogenous alginate is independent of endogenous alginate production. We further demonstrate that coculture of mucoid P. aeruginosa with nonmucoid P. aeruginosa strains can mitigate the killing of S. aureus by the nonmucoid strain of P. aeruginosa, indicating that the mechanism that we describe here may function in vivo in the context of mixed infections. Finally, we investigated a panel of mucoid clinical isolates that retain the ability to kill S. aureus at late time points and show that each strain has a unique expression profile, indicating that mucoid isolates can overcome the S. aureus-protective effects of mucoidy in a strain-specific manner. IMPORTANCE CF patients are chronically infected by polymicrobial communities. The two dominant bacterial pathogens that infect the lungs of CF patients are P. aeruginosa and S. aureus, with ∼30% of patients coinfected by both species. Such coinfected individuals have worse outcomes than monoinfected patients, and both species persist within the same physical space. A variety of host and environmental factors have been demonstrated to promote P. aeruginosa-S. aureus coexistence, despite evidence that P. aeruginosa kills S. aureus when these organisms are cocultured in vitro. Thus, a better understanding of P. aeruginosa-S. aureus interactions, particularly mechanisms by which these microorganisms are able to coexist in proximal physical space, will lead to better-informed treatments for chronic polymicrobial infections.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xinxin Yang ◽  
Haibo Yang ◽  
Fengdi Wu ◽  
Zhipeng Qi ◽  
Jiashuo Li ◽  
...  

Excessive manganese (Mn) can accumulate in the striatum of the brain following overexposure. Oxidative stress is a well-recognized mechanism in Mn-induced neurotoxicity. It has been proven that glutathione (GSH) depletion is a key factor in oxidative damage during Mn exposure. However, no study has focused on the dysfunction of GSH synthesis-induced oxidative stress in the brain during Mn exposure. The objective of the present study was to explore the mechanism of Mn disruption of GSH synthesis via EAAC1 and xCT in vitro and in vivo. Primary neurons and astrocytes were cultured and treated with different doses of Mn to observe the state of cells and levels of GSH and reactive oxygen species (ROS) and measure mRNA and protein expression of EAAC1 and xCT. Mice were randomly divided into seven groups, which received saline, 12.5, 25, and 50 mg/kg MnCl2, 500 mg/kg AAH (EAAC1 inhibitor) + 50 mg/kg MnCl2, 75 mg/kg SSZ (xCT inhibitor) + 50 mg/kg MnCl2, and 100 mg/kg NAC (GSH rescuer) + 50 mg/kg MnCl2 once daily for two weeks. Then, levels of EAAC1, xCT, ROS, GSH, malondialdehyde (MDA), protein sulfhydryl, carbonyl, 8-hydroxy-2-deoxyguanosine (8-OHdG), and morphological and ultrastructural features in the striatum of mice were measured. Mn reduced protein levels, mRNA expression, and immunofluorescence intensity of EAAC1 and xCT. Mn also decreased the level of GSH, sulfhydryl, and increased ROS, MDA, 8-OHdG, and carbonyl in a dose-dependent manner. Injury-related pathological and ultrastructure changes in the striatum of mice were significantly present. In conclusion, excessive exposure to Mn disrupts GSH synthesis through inhibition of EAAC1 and xCT to trigger oxidative damage in the striatum.


2014 ◽  
Vol 83 (3) ◽  
pp. 1019-1029 ◽  
Author(s):  
Julienne C. Kaiser ◽  
Sameha Omer ◽  
Jessica R. Sheldon ◽  
Ian Welch ◽  
David E. Heinrichs

The branched-chain amino acids (BCAAs; Ile, Leu, and Val) not only are important nutrients for the growth ofStaphylococcus aureusbut also are corepressors for CodY, which regulates virulence gene expression, implicating BCAAs as an important link between the metabolic state of the cell and virulence. BCAAs are either synthesized intracellularly or acquired from the environment.S. aureusencodes three putative BCAA transporters, designated BrnQ1, BrnQ2, and BrnQ3; their functions have not yet been formally tested. In this study, we mutated all threebrnQparalogs so as to characterize their substrate specificities and their roles in growthin vitroandin vivo. We demonstrated that in the community-associated, methicillin-resistantS. aureus(CA-MRSA) strain USA300, BrnQ1 is involved in uptake of all three BCAAs, BrnQ2 transports Ile, and BrnQ3 does not have a significant role in BCAA transport under the conditions tested. Of the three, only BrnQ1 is essential for USA300 to grow in a chemically defined medium that is limited for Leu or Val. Interestingly, we observed that abrnQ2mutant grew better than USA300 in media limited for Leu and Val, owing to the fact that this mutation leads to overexpression ofbrnQ1. In a murine infection model, thebrnQ1mutant was attenuated, but in contrast,brnQ2mutants had significantly increased virulence compared to that of USA300, a phenotype we suggest is at least partially linked to enhancedin vivoscavenging of Leu and Val through BrnQ1. These data uncover a hitherto-undiscovered connection between nutrient acquisition and virulence in CA-MRSA.


2007 ◽  
Vol 189 (24) ◽  
pp. 8871-8879 ◽  
Author(s):  
Zhibiao Fu ◽  
Niles P. Donegan ◽  
Guido Memmi ◽  
Ambrose L. Cheung

ABSTRACT The mazEF homologs of Staphylococcus aureus, designated mazEFsa , have been shown to cotranscribe with the sigB operon under stress conditions. In this study, we showed that MazEF Sa , as with their Escherichia coli counterparts, compose a toxin-antitoxin module wherein MazF Sa leads to rapid cell growth arrest and loss in viable CFU upon overexpression. MazF Sa is a novel sequence-specific endoribonuclease which cleaves mRNA to inhibit protein synthesis. Using ctpA mRNA as the model substrate both in vitro and in vivo, we demonstrated that MazF Sa cleaves single-strand RNA preferentially at the 5′ side of the first U or 3′ side of the second U residue within the consensus sequences VUUV′ (where V and V′ are A, C, or G and may or may not be identical). Binding studies confirmed that the antitoxin MazE Sa binds MazF Sa to form a complex to inhibit the endoribonuclease activity of MazF Sa . Contrary to the system in E. coli, exposure to selected antibiotics augmented mazEFsa transcription, akin to what one would anticipate from the environmental stress response of the sigB system. These data indicate that the mazEF system of S. aureus differs from the gram-negative counterparts with respect to mRNA cleavage specificity and antibiotic stresses.


2016 ◽  
Vol 60 (10) ◽  
pp. 5688-5694 ◽  
Author(s):  
Daniel G. Meeker ◽  
Karen E. Beenken ◽  
Weston B. Mills ◽  
Allister J. Loughran ◽  
Horace J. Spencer ◽  
...  

ABSTRACTWe usedin vitroandin vivomodels of catheter-associated biofilm formation to compare the relative activity of antibiotics effective against methicillin-resistantStaphylococcus aureus(MRSA) in the specific context of an established biofilm. The results demonstrated that, underin vitroconditions, daptomycin and ceftaroline exhibited comparable activity relative to each other and greater activity than vancomycin, telavancin, oritavancin, dalbavancin, or tigecycline. This was true when assessed using established biofilms formed by the USA300 methicillin-resistant strain LAC and the USA200 methicillin-sensitive strain UAMS-1. Oxacillin exhibited greater activity against UAMS-1 than LAC, as would be expected, since LAC is an MRSA strain. However, the activity of oxacillin was less than that of daptomycin and ceftaroline even against UAMS-1. Among the lipoglycopeptides, telavancin exhibited the greatest overall activity. Specifically, telavancin exhibited greater activity than oritavancin or dalbavancin when tested against biofilms formed by LAC and was the only lipoglycopeptide capable of reducing the number of viable bacteria below the limit of detection. With biofilms formed by UAMS-1, telavancin and dalbavancin exhibited comparable activity relative to each other and greater activity than oritavancin. Importantly, ceftaroline was the only antibiotic that exhibited greater activity than vancomycin when testedin vivoin a murine model of catheter-associated biofilm formation. These results emphasize the need to consider antibiotics other than vancomycin, most notably, ceftaroline, for the treatment of biofilm-associatedS. aureusinfections, including by the matrix-based antibiotic delivery methods often employed for local antibiotic delivery in the treatment of these infections.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Zhihong Lin ◽  
Danni Zhu ◽  
Yongqing Yan ◽  
Boyang Yu ◽  
Qiujuan Wang ◽  
...  

Oxidative stress is involved in the pathogenesis of ischemic neuronal injury. A Chinese herbal formula composed ofPoria cocos(Chinese name:Fu Ling),Atractylodes macrocephala(Chinese name:Bai Zhu) andAngelica sinensis(Chinese names:Danggui, Dong quai, Donggui; Korean name:Danggwi) (FBD), has been proved to be beneficial in the treatment of cerebral ischemia/reperfusion (I/R).This study was carried out to evaluate the protective effect of FBD against neuronal oxidative stressin vivoandin vitro. Rat I/R were established by middle cerebral artery occlusion (MCAO) for 1 h, followed by 24 h reperfusion. MCAO led to significant depletion in superoxide dismutase and glutathione and rise in lipid peroxidation (LPO) and nitric oxide in brain. The neurological deficit and brain infarction were also significantly elevated by MCAO as compared with sham-operated group. All the brain oxidative stress and damage were significantly attenuated by 7 days pretreatment with the aqueous extract of FBD (250 mg kg−1, p.o.). Moreover, cerebrospinal fluid sampled from FBD-pretreated rats protected PC12 cells against oxidative insult induced by 0.2 mM hydrogen peroxide, in a concentration and time-dependent manner (IC5010.6%, ET501.2 h). However, aqueous extract of FBD just slightly scavenged superoxide anion radical generated in xanthine–xanthine oxidase system (IC502.4 mg ml−1) and hydroxyl radical generated in Fenton reaction system (IC503.6 mg ml−1). In conclusion, FBD was a distinct antioxidant phytotherapy to rescue neuronal oxidative stress, through blocking LPO, restoring endogenous antioxidant system, but not scavenging free radicals.


Sign in / Sign up

Export Citation Format

Share Document