scholarly journals relA-Independent Amino Acid Starvation Response Network of Streptococcus pyogenes

2001 ◽  
Vol 183 (24) ◽  
pp. 7354-7364 ◽  
Author(s):  
Kerstin Steiner ◽  
Horst Malke

ABSTRACT Streptococcus pyogenes (group A streptococcus [GAS]), a multiple-amino-acid-auxotrophic human pathogen, may face starvation for essential amino acids during various stages of the infection process. Since the response of GAS to such conditions is likely to influence pathogenetic processes, we set out to identify by transcriptional analyses genes and operons that are responsive to amino acid starvation and examined whether functionally meaningful response patterns can be ascertained. We discovered that GAS are capable of mounting a relA-independent amino acid starvation response that involves transcriptional modulation of a wide array of housekeeping genes as well as accessory and dedicated virulence genes. Housekeeping genes that were upregulated during starvation of both wild-type and relA mutant strains included the newly identified T-box members of the aminoacyl-tRNA synthetase genes, the genes for components of the tmRNA-mediated peptide tagging and proteolysis system for abnormal proteins (ssrA, smpB,clpP, and clpC), and the operons for thednaK and groE groups of molecular chaperones. In addition to upregulation of the genes for oligopeptide permease (opp), intracellular peptidase (pepB), and the two-component regulatorcovRS reported previously (K. Steiner and H. Malke, Mol. Microbiol. 38:1004–1016, 2000), amino acid starvation stimulated the transcription of the growth phase-associated, virulence-regulatory fas operon, the streptolysin S operon (sag), and the gene for autoinducer-2 production protein (luxS). A prominent feature of operons exhibiting internal transcriptional termination (opp, fas, andsag) was starvation-promoted full-length transcription, a mechanism that improves the efficacy of these systems by increasing the level of coordinate transcription of functionally related genes. Based on these results, a regulatory network with feedback mechanisms is proposed that counteracts the stringent response, links the levels of key rate-limiting enzymes to virulence gene expression, and enables the organism in a dynamic way to take advantage of protein-rich environments provided by its human host. As several of the affected target genes are controlled by more than one regulator, fine modulation may result in accordance with the demands imposed by ecologically different colonization sites upon the adaptive capacity of the pathogen.

2020 ◽  
Vol 48 (6) ◽  
pp. 3071-3088
Author(s):  
Matthew R McFarland ◽  
Corina D Keller ◽  
Brandon M Childers ◽  
Stephen A Adeniyi ◽  
Holly Corrigall ◽  
...  

Abstract During protein synthesis, charged tRNAs deliver amino acids to translating ribosomes, and are then re-charged by tRNA synthetases (aaRS). In humans, mutant aaRS cause a diversity of neurological disorders, but their molecular aetiologies are incompletely characterised. To understand system responses to aaRS depletion, the yeast glutamine aaRS gene (GLN4) was transcriptionally regulated using doxycycline by tet-off control. Depletion of Gln4p inhibited growth, and induced a GCN4 amino acid starvation response, indicative of uncharged tRNA accumulation and Gcn2 kinase activation. Using a global model of translation that included aaRS recharging, Gln4p depletion was simulated, confirming slowed translation. Modelling also revealed that Gln4p depletion causes negative feedback that matches translational demand for Gln-tRNAGln to aaRS recharging capacity. This maintains normal charged tRNAGln levels despite Gln4p depletion, confirmed experimentally using tRNA Northern blotting. Model analysis resolves the paradox that Gln4p depletion triggers a GCN4 response, despite maintenance of tRNAGln charging levels, revealing that normally, the aaRS population can sequester free, uncharged tRNAs during aminoacylation. Gln4p depletion reduces this sequestration capacity, allowing uncharged tRNAGln to interact with Gcn2 kinase. The study sheds new light on mutant aaRS disease aetiologies, and explains how aaRS sequestration of uncharged tRNAs can prevent GCN4 activation under non-starvation conditions.


2019 ◽  
Author(s):  
Matthew R. McFarland ◽  
Corina D. Keller ◽  
Brandon M. Childers ◽  
Stephen A. Adeniyi ◽  
Holly Corrigall ◽  
...  

ABSTRACTDuring protein synthesis, charged tRNAs deliver amino acids to translating ribosomes, and are then re-charged by tRNA synthetases (aaRS). In humans, mutant aaRS cause a diversity of neurological disorders, but their molecular aetiologies are incompletely characterised. To understand system responses to aaRS depletion, the yeast glutamine aaRS gene (GLN4) was transcriptionally regulated using doxycycline by tet-off control. Depletion of Gln4p inhibited growth, and induced a GCN4 amino acid starvation response, indicative of uncharged tRNA accumulation and Gcn2 kinase activation. Using a global model of translation that included aaRS recharging, Gln4p depletion was simulated, confirming slowed translation. Modelling also revealed that Gln4p depletion causes negative feedback that matches translational demand for Gln-tRNAGln to aaRS recharging capacity. This maintains normal charged tRNAGln levels despite Gln4p depletion, confirmed experimentally using tRNA Northern blotting. Model analysis resolves the paradox that Gln4p depletion triggers a GCN4 response, despite maintenance of tRNAGln charging levels, revealing that normally, the aaRS population can sequester free, uncharged tRNAs during aminoacylation. Gln4p depletion reduces this sequestration capacity, allowing uncharged tRNAGln to interact with Gcn2 kinase. The study sheds new light on mutant aaRS disease aetiologies, and explains how aaRS sequestration of uncharged tRNAs can prevent GCN4 activation under non-starvation conditions.


Microbiology ◽  
2009 ◽  
Vol 155 (2) ◽  
pp. 566-575 ◽  
Author(s):  
Gordon Churchward ◽  
Christopher Bates ◽  
Asiya A. Gusa ◽  
Virginia Stringer ◽  
June R. Scott

The important human pathogen Streptococcus pyogenes (the group A streptococcus or GAS) produces many virulence factors that are regulated by the two-component signal transduction system CovRS (CsrRS). Dissemination of GAS infection originating at the skin has been shown to require production of streptokinase, whose transcription is repressed by CovR. In this work we have studied the interaction of CovR and phosphorylated CovR (CovR-P) with the promoter for streptokinase, Pska. We found that, in contrast to the other CovR-repressed promoters, Pska regulation by CovR occurs through binding at a single ATTARA consensus binding sequence (CB) that overlaps the −10 region of the promoter. Binding of CovR to other nearby consensus sequences occurs upon phosphorylation of the protein, but these other CBs do not contribute to the regulation of Pska by CovR. Thus, binding at a specific site does not necessarily indicate that the site is involved in regulation by CovR. In addition, at Pska, CovR binding to the different sites does not appear to involve cooperative interactions, which simplifies the analysis of CovR binding and gives us insight into the modes of interaction that occur between CovR and its specific DNA-binding sites. Finally, the observation that regulation of transcription from Pska occurs at a very low concentration of phosphorylated CovR may have important implications for the regulation of virulence gene expression during GAS infection.


1990 ◽  
Vol 10 (6) ◽  
pp. 2820-2831
Author(s):  
R C Wek ◽  
M Ramirez ◽  
B M Jackson ◽  
A G Hinnebusch

GCN4 is a transcriptional activator of amino acid-biosynthetic genes in the yeast Saccharomyces cerevisiae. GCN2, a translational activator of GCN4 expression, contains a domain homologous to the catalytic subunit of eucaryotic protein kinases. Substitution of a highly conserved lysine residue in the kinase domain abolished GCN2 regulatory function in vivo and its ability to autophosphorylate in vitro, indicating that GCN2 acts as a protein kinase in stimulating GCN4 expression. Elevated GCN2 gene dosage led to derepression of GCN4 under nonstarvation conditions; however, we found that GCN2 mRNA and protein levels did not increase in wild-type cells in response to amino acid starvation. Therefore, it appears that GCN2 protein kinase function is stimulated posttranslationally in amino acid-starved cells. Three dominant-constitutive GCN2 point mutations were isolated that led to derepressed GCN4 expression under nonstarvation conditions. Two of the GCN2(Con) mutations mapped in the kinase domain itself. The third mapped just downstream from a carboxyl-terminal segment homologous to histidyl-tRNA synthetase (HisRS), which we suggested might function to detect uncharged tRNA in amino acid-starved cells and activate the adjacent protein kinase moiety. Deletions and substitutions in the HisRS-related sequences and in the carboxyl-terminal segment in which one of the GCN2(Con) mutation mapped abolished GCN2 positive regulatory function in vivo without lowering autophosphorylation activity in vitro. These results suggest that sequences flanking the GCN2 protein kinase moiety are positive-acting domains required to increase recognition of physiological substrates or lower the requirement for uncharged tRNA to activate kinase activity under conditions of amino acid starvation.


1992 ◽  
Vol 12 (12) ◽  
pp. 5801-5815
Author(s):  
M Ramirez ◽  
R C Wek ◽  
C R Vazquez de Aldana ◽  
B M Jackson ◽  
B Freeman ◽  
...  

The protein kinase GCN2 stimulates expression of the yeast transcriptional activator GCN4 at the translational level by phosphorylating the alpha subunit of translation initiation factor 2 (eIF-2 alpha) in amino acid-starved cells. Phosphorylation of eIF-2 alpha reduces its activity, allowing ribosomes to bypass short open reading frames present in the GCN4 mRNA leader and initiate translation at the GCN4 start codon. We describe here 17 dominant GCN2 mutations that lead to derepression of GCN4 expression in the absence of amino acid starvation. Seven of these GCN2c alleles map in the protein kinase moiety, and two in this group alter the presumed ATP-binding domain, suggesting that ATP binding is a regulated aspect of GCN2 function. Six GCN2c alleles map in a region related to histidyl-tRNA synthetases, and two in this group alter a sequence motif conserved among class II aminoacyl-tRNA synthetases that directly interacts with the acceptor stem of tRNA. These results support the idea that GCN2 kinase function is activated under starvation conditions by binding uncharged tRNA to the domain related to histidyl-tRNA synthetase. The remaining GCN2c alleles map at the extreme C terminus, a domain required for ribosome association of the protein. Representative mutations in each domain were shown to depend on the phosphorylation site in eIF-2 alpha for their effects on GCN4 expression and to increase the level of eIF-2 alpha phosphorylation in the absence of amino acid starvation. Synthetic GCN2c double mutations show greater derepression of GCN4 expression than the parental single mutations, and they have a slow-growth phenotype that we attribute to inhibition of general translation initiation. The phenotypes of the GCN2c alleles are dependent on GCN1 and GCN3, indicating that these two positive regulators of GCN4 expression mediate the inhibitory effects on translation initiation associated with activation of the yeast eIF-2 alpha kinase GCN2.


1995 ◽  
Vol 15 (8) ◽  
pp. 4497-4506 ◽  
Author(s):  
S A Wek ◽  
S Zhu ◽  
R C Wek

Protein kinase GCN2 is a multidomain protein that contains a region homologous to histidyl-tRNA synthetases juxtaposed to the kinase catalytic moiety. Previous studies have shown that in response to histidine starvation, GCN2 phosphorylates eukaryotic initiation factor 2 (eIF-2), to induce the translational expression of GCN4, a transcriptional activator of genes subject to the general amino acid control. It was proposed that the synthetase-related sequences of GCN2 stimulate the activity of the kinase by interacting directly with uncharged tRNA that accumulates during amino acid limitation. In addition to histidine starvation, expression of GCN4 is also regulated by a number of other amino acid limitations. Questions that we posed in this report are whether uncharged tRNA is the most direct regulator of GCN2 and whether the function of this kinase is required to recognize each of the different amino acid starvation signals. We show that GCN2 phosphorylation of eIF-2, and the resulting general amino acid control pathway, is stimulated in response to starvation for each of several different amino acids, in addition to histidine limitation. Cells containing a defective aminoacyl-tRNA synthetase also stimulated GCN2 phosphorylation of eIF-2 in the absence of amino acid starvation, indicating that uncharged tRNA levels are the most direct regulator of GCN2 kinase. Using a Northwestern blot (RNA binding) assay, we show that uncharged tRNA can bind to the synthetase-related domain of GCN2. Mutations in the motif 2 sequence conserved among class II synthetases, including histidyl-tRNA synthetases, impair the ability of this synthetase-related domain to bind tRNA and abolish GCN2 phosphorylation of eIF-2 required to stimulate the general amino acid control response. These in vivo and in vitro experiments indicate that synthetase-related sequences regulate GCN2 kinase function by monitoring the levels of multiple uncharged tRNAs that accumulate during amino acid limitations.


1992 ◽  
Vol 12 (12) ◽  
pp. 5801-5815 ◽  
Author(s):  
M Ramirez ◽  
R C Wek ◽  
C R Vazquez de Aldana ◽  
B M Jackson ◽  
B Freeman ◽  
...  

The protein kinase GCN2 stimulates expression of the yeast transcriptional activator GCN4 at the translational level by phosphorylating the alpha subunit of translation initiation factor 2 (eIF-2 alpha) in amino acid-starved cells. Phosphorylation of eIF-2 alpha reduces its activity, allowing ribosomes to bypass short open reading frames present in the GCN4 mRNA leader and initiate translation at the GCN4 start codon. We describe here 17 dominant GCN2 mutations that lead to derepression of GCN4 expression in the absence of amino acid starvation. Seven of these GCN2c alleles map in the protein kinase moiety, and two in this group alter the presumed ATP-binding domain, suggesting that ATP binding is a regulated aspect of GCN2 function. Six GCN2c alleles map in a region related to histidyl-tRNA synthetases, and two in this group alter a sequence motif conserved among class II aminoacyl-tRNA synthetases that directly interacts with the acceptor stem of tRNA. These results support the idea that GCN2 kinase function is activated under starvation conditions by binding uncharged tRNA to the domain related to histidyl-tRNA synthetase. The remaining GCN2c alleles map at the extreme C terminus, a domain required for ribosome association of the protein. Representative mutations in each domain were shown to depend on the phosphorylation site in eIF-2 alpha for their effects on GCN4 expression and to increase the level of eIF-2 alpha phosphorylation in the absence of amino acid starvation. Synthetic GCN2c double mutations show greater derepression of GCN4 expression than the parental single mutations, and they have a slow-growth phenotype that we attribute to inhibition of general translation initiation. The phenotypes of the GCN2c alleles are dependent on GCN1 and GCN3, indicating that these two positive regulators of GCN4 expression mediate the inhibitory effects on translation initiation associated with activation of the yeast eIF-2 alpha kinase GCN2.


2007 ◽  
Vol 6 (6) ◽  
pp. 1018-1029 ◽  
Author(s):  
Chaoguang Tian ◽  
Takao Kasuga ◽  
Matthew S. Sachs ◽  
N. Louise Glass

ABSTRACT Identifying and characterizing transcriptional regulatory networks is important for guiding experimental tests on gene function. The characterization of regulatory networks allows comparisons among both closely and distantly related species, providing insight into network evolution, which is predicted to correlate with the adaptation of different species to particular environmental niches. One of the most intensely studied regulatory factors in the yeast Saccharomyces cerevisiae is the bZIP transcription factor Gcn4p. Gcn4p is essential for a global transcriptional response when S. cerevisiae experiences amino acid starvation. In the filamentous ascomycete Neurospora crassa, the ortholog of GCN4 is called the cross pathway control-1 (cpc-1) gene; it is required for the ability of N. crassa to induce a number of amino acid biosynthetic genes in response to amino acid starvation. Here, we deciphered the CPC1 regulon by profiling transcription in wild-type and cpc-1 mutant strains with full-genome N. crassa 70-mer oligonucleotide microarrays. We observed that at least 443 genes were direct or indirect CPC1 targets; these included 67 amino acid biosynthetic genes, 16 tRNA synthetase genes, and 13 vitamin-related genes. Comparison among the N. crassa CPC1 transcriptional profiling data set and the Gcn4/CaGcn4 data sets from S. cerevisiae and Candida albicans revealed a conserved regulon of 32 genes, 10 of which are predicted to be directly regulated by Gcn4p/CPC1. The 32-gene conserved regulon comprises mostly amino acid biosynthetic genes. The comparison of regulatory networks in species with clear orthology among genes sheds light on how gene interaction networks evolve.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1407-C1407
Author(s):  
Isha Singh ◽  
Hongzhen He ◽  
Sheree Wek ◽  
Souvik Dey ◽  
Thomas Baird ◽  
...  

General control non-derepressible 2 kinase (GCN2) is a serine threonine kinase that curtails translation in response to diverse stress stimuli [1]. It is a primary sensor of amino acid starvation and mediates translation repression by phosphorylating eIF2 [2]. In addition to the kinase domain, GCN2 contains two regulatory regions; a histidyl-tRNA synthetase-like domain (HisRS) and a C-terminal domain (CTD), which function together to sense nutrient depletion. Both domains have been proposed to bind uncharged tRNA's that accumulate during amino acid starvation followed by dimerization of the kinase domain facilitating activation of GCN2 [3]. Thus, while the CTD plays an important regulatory role in activating GCN2, information on how the CTD facilitates dimerization and whether the CTD plays a similar role in murine GCN2 is limited. Moreover, the sequences of vertebrate CTDs share less than 10% sequence identity with their yeast counterpart; therefore, it is not known whether regulatory mechanisms in GCN2 are conserved across different species. We present here the experimentally phased crystal structures of murine CTD at 1.9 Å and yeast CTD at 1.95 Å. Both murine and yeast CTDs share a novel interdigitated dimeric organization, although the dimeric structures differ somewhat in overall shape and size. Additional biochemical analysis of the murine CTD confirms an important role for dimerization in its activation. Moreover, functional studies reveal that both yeast and murine GCN2 have similar nucleic acid binding properties, but mGCN2 does not appear to exhibit ribosomal association, a key feature in the model for regulation of yeast GCN2, suggesting that there are regulatory differences between the murine GCN2 and its yeast counterpart. Our data provides a basis for understanding the role of the CTD in regulation of GCN2 in both yeast and mammals.


2004 ◽  
Vol 72 (3) ◽  
pp. 1799-1803 ◽  
Author(s):  
Sean D. Reid ◽  
Alison G. Montgomery ◽  
James M. Musser

ABSTRACT We have identified a Crp/Fnr-like transcriptional regulator of Streptococcus pyogenes that when inactivated attenuates virulence. The gene, named srv for streptococcal regulator of virulence, encodes a 240-amino-acid protein with 53% amino acid similarity to PrfA, a transcriptional activator of virulence in Listeria monocytogenes.


Sign in / Sign up

Export Citation Format

Share Document