scholarly journals The Deacetylase SIRT1 Regulates the Replication Properties of Human Papillomavirus 16 E1 and E2

2017 ◽  
Vol 91 (10) ◽  
Author(s):  
Dipon Das ◽  
Nathan Smith ◽  
Xu Wang ◽  
Iain M. Morgan

ABSTRACT Human papillomaviruses (HPV) replicate their genomes in differentiating epithelium using the viral proteins E1 and E2 in association with host proteins. While the roles of E1 and E2 in this process are understood, the host factors involved and how they interact with and regulate E1-E2 are not. Our previous work identified the host replication and repair factor TopBP1 as an E2 partner protein essential for optimal E1-E2 replication and for the viral life cycle. The role of TopBP1 in host DNA replication is regulated by the class III deacetylase SIRT1; activation of the DNA damage response prevents SIRT1 deacetylation of TopBP1, resulting in a switch from DNA replication to repair functions for this protein and cell cycle arrest. Others have demonstrated an essential role for SIRT1 in regulation of the HPV31 life cycle; here, we report that SIRT1 can directly regulate HPV16 E1-E2-mediated DNA replication. SIRT1 is part of the E1-E2 DNA replication complex and is recruited to the viral origin of replication in an E1-E2-dependent manner. CRISPR/Cas9 was used to generate C33a clones with undetectable SIRT1 expression and lack of SIRT1 elevated E1-E2 DNA replication, in part due to increased acetylation and stabilization of the E2 protein in the absence of SIRT1. The results demonstrate that SIRT1 is a member of, and can regulate, the HPV16 replication complex. We discuss the potential role of this protein in the viral life cycle. IMPORTANCE HPV are causative agents in a number of human diseases, and currently only the symptoms of these diseases are treated. To identify novel therapeutic approaches for combating these diseases, the viral life cycle must be understood in more detail. This report demonstrates that a cellular enzyme, SIRT1, is part of the HPV16 DNA replication complex and is brought to the viral genome by the viral proteins E1 and E2. Using gene editing technology (CRISPR/Cas9), the SIRT1 gene was removed from cervical cancer cells. The consequence of this was that viral replication was elevated, probably due to a stabilization of the viral replication factor E2. The overall results demonstrate that an enzyme with known inhibitors, SIRT1, plays an important role in controlling how HPV16 makes copies of itself. Targeting this enzyme could be a new therapeutic approach for combating HPV spread and disease.

mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Claire D. James ◽  
Apurva T. Prabhakar ◽  
Raymonde Otoa ◽  
Michael R. Evans ◽  
Xu Wang ◽  
...  

ABSTRACT Human papillomaviruses induce a host of anogenital cancers, as well as oropharyngeal cancer (HPV+OPC); human papillomavirus 16 (HPV16) is causative in around 90% of HPV+OPC cases. Using telomerase reverse transcriptase (TERT) immortalized foreskin keratinocytes (N/Tert-1), we have identified significant host gene reprogramming by HPV16 (N/Tert-1+HPV16) and demonstrated that N/Tert-1+HPV16 support late stages of the viral life cycle. Expression of the cellular dNTPase and homologous recombination factor sterile alpha motif and histidine-aspartic domain HD-containing protein 1 (SAMHD1) is transcriptionally regulated by HPV16 in N/Tert-1. CRISPR/Cas9 removal of SAMHD1 from N/Tert-1 and N/Tert-1+HPV16 demonstrates that SAMHD1 controls cell proliferation of N/Tert-1 only in the presence of HPV16; the deletion of SAMHD1 promotes hyperproliferation of N/Tert-1+HPV16 cells in organotypic raft cultures but has no effect on N/Tert-1. Viral replication is also elevated in the absence of SAMHD1. This new system has allowed us to identify a specific interaction between SAMHD1 and HPV16 that regulates host cell proliferation and viral replication; such studies are problematic in nonimmortalized primary keratinocytes due to their limited life span. To confirm the relevance of our results, we repeated the analysis with human tonsil keratinocytes (HTK) immortalized by HPV16 (HTK+HPV16) and observed the same hyperproliferative phenotype following CRISPR/Cas9 editing of SAMHD1. Identical results were obtained with three independent CRISPR/Cas9 guide RNAs. The isogenic pairing of N/Tert-1 with N/Tert-1+HPV16, combined with HTK+HPV16, presents a unique system to identify host genes whose products functionally interact with HPV16 to regulate host cellular growth in keratinocytes. IMPORTANCE HPVs are causative agents in human cancers and are responsible for around of 5% of all cancers. A better understanding of the viral life cycle in keratinocytes will facilitate the development of novel therapeutics to combat HPV-positive cancers. Here, we present a unique keratinocyte model to identify host proteins that specifically interact with HPV16. Using this system, we report that a cellular gene, SAMHD1, is regulated by HPV16 at the RNA and protein levels in keratinocytes. Elimination of SAMHD1 from these cells using CRISPR/Cas9 editing promotes enhanced cellular proliferation by HPV16 in keratinocytes and elevated viral replication but not in keratinocytes that do not have HPV16. Our study demonstrates a specific intricate interplay between HPV16 and SAMHD1 during the viral life cycle and establishes a unique model system to assist exploring host factors critical for HPV pathogenesis.


2003 ◽  
Vol 77 (5) ◽  
pp. 2832-2842 ◽  
Author(s):  
Sybil M. Genther ◽  
Stephanie Sterling ◽  
Stefan Duensing ◽  
Karl Münger ◽  
Carol Sattler ◽  
...  

ABSTRACT Human papillomaviruses (HPVs) are small circular DNA viruses that cause warts. Infection with high-risk anogenital HPVs, such as HPV type 16 (HPV16), is associated with human cancers, specifically cervical cancer. The life cycle of HPVs is intimately tied to the differentiation status of the host epithelium and has two distinct stages: the nonproductive stage and the productive stage. In the nonproductive stage, which arises in the poorly differentiated basal epithelial compartment of a wart, the virus maintains itself as a low-copy-number nuclear plasmid. In the productive stage, which arises as the host cell undergoes terminal differentiation, viral DNA is amplified; the capsid genes, L1 and L2, are expressed; and progeny virions are produced. This stage of the viral life cycle relies on the ability of the virus to reprogram the differentiated cells to support DNA synthesis. Papillomaviruses encode multiple oncoproteins, E5, E6, and E7. In the present study, we analyze the role of one of these viral oncogenes, E5, in the viral life cycle. To assess the role of E5 in the HPV16 life cycle, we introduced wild-type (WT) or E5 mutant HPV16 genomes into NIKS, a keratinocyte cell line that supports the papillomavirus life cycle. By culturing these cells under conditions that allow them to remain undifferentiated, a state similar to that of basal epithelial cells, we determined that E5 does not play an essential role in the nonproductive stage of the HPV16 life cycle. To determine if E5 plays a role in the productive stage of the viral life cycle, we cultured keratinocyte populations in organotypic raft cultures, which promote the differentiation and stratification of epithelial cells. We found that cells harboring E5 mutant genomes displayed a quantitative reduction in the percentage of suprabasal cells undergoing DNA synthesis, compared to cells containing WT HPV16 DNA. This reduction in DNA synthesis, however, did not prevent amplification of viral DNA in the differentiated cellular compartment. Likewise, late viral gene expression and the perturbation of normal keratinocyte differentiation were retained in cells harboring E5 mutant genomes. These data demonstrate that E5 plays a subtle role during the productive stage of the HPV16 life cycle.


2020 ◽  
Author(s):  
Claire D. James ◽  
Dipon Das ◽  
Ethan L. Morgan ◽  
Raymonde Otoa ◽  
Andrew Macdonald ◽  
...  

AbstractHuman papillomaviruses recruit a host of DNA damage response factors to their viral genome to facilitate homologous recombination replication in association with the viral replication factors E1 and E2. We previously demonstrated that SIRT1 deacetylation of WRN promotes recruitment of WRN to E1-E2 replicating DNA, and that WRN regulates both the levels and fidelity of E1-E2 replication. The deacetylation of WRN by SIRT1 results in an active protein able to complex with replicating DNA, but a protein that is less stable. Here we demonstrate an inverse correlation between SIRT1 and WRN in CIN cervical lesions when compared with normal control tissue, supporting our model of SIRT1 deacetylation destabilizing WRN protein. We CRISPR/Cas9 edited N/Tert-1 and N/Tert-1+HPV16 cells to knock out WRN protein expression and subjected the cells to organotypic raft cultures. In N/Tert-1 cells without WRN expression there was enhanced basal cell proliferation, DNA damage and thickening of the differentiated epithelium. In N/Tert-1+HPV16 cells, there was enhanced basal cell proliferation, increased DNA damage throughout the epithelium and increased viral DNA replication. Overall, the results demonstrate that the expression of WRN is required to control the proliferation of N/Tert-1 cells and controls the HPV16 life cycle in these cells. This complements our previous data demonstrating that WRN controls the levels and fidelity of HPV16 E1-E2 DNA replication. The results describe a new role for WRN, a tumor suppressor, in controlling keratinocyte differentiation and the HPV16 life cycle.ImportanceHPV16 is the major human viral carcinogen, responsible for around 3-4% of all cancers worldwide. Our understanding of how the viral replication machinery interacts with host factors to control/activate the DNA damage response to promote the viral life cycle remains incomplete. Recently, we demonstrated a SIRT1-WRN axis that controls HPV16 replication and here we demonstrate that this axis persists in clinical cervical lesions induced by HPV16. Here we describe the effects of WRN depletion on cellular differentiation with and without HPV16; WRN depletion results in enhanced proliferation and DNA damage irrespective of HPV16 status. Also, WRN is a restriction factor for the viral life cycle as replication is disrupted in the absence of WRN. Future studies will focus on enhancing our understanding of how WRN regulates viral replication. Our goal is to ultimately identify cellular factors essential for HPV16 replication that can be targeted for therapeutic gain.


2019 ◽  
Author(s):  
Claire D. James ◽  
Apurva T. Prabhakar ◽  
Michael R. Evans ◽  
Xu Wang ◽  
Molly L Bristol ◽  
...  

AbstractHuman papillomaviruses induce a host of anogenital cancers, and also oropharyngeal cancer (HPV+OPC); HPV16 is causative in around 90% of HPV+OPC. Using TERT immortalized “normal” oral keratinocytes (NOKs) we have identified significant host gene reprogramming by HPV16 (NOKs+HPV16), and demonstrated that NOKs+HPV16 support late stages of the viral life cycle. Expression of the cellular dNTPase and homologous recombination factor SAMHD1 is transcriptionally regulated by HPV16 in NOKs, and here we demonstrate that E6 and E7 regulate expression of SAMHD1 at the transcriptional and post-transcriptional levels. CRISPR/Cas9 removal of SAMHD1 from NOKs and NOKs+HPV16 demonstrate that SAMHD1 controls cell proliferation of NOKs only in the presence of HPV16; deletion of SAMHD1 promotes hyper-proliferation of NOKs+HPV16 cells in organotypic raft cultures but has no effect on NOKs. Viral replication is also elevated in the absence of SAMHD1. This new system has allowed us to identify a specific interaction between SAMHD1 and HPV16 that regulates host cell proliferation and viral replication; such studies are problematic in non-immortalized primary oral keratinocytes due to their limited lifespan. To confirm the relevance of our results we repeated the analysis with human tonsil keratinocytes immortalized by HPV16 (HTK16) and observe the same hyper-proliferative phenotype following CRISPR/Cas9 editing of SAMHD1. Identical results were obtained with three independent CRISPR/Cas9 guide RNAs. The isogenic pairing of NOKs with NOKs+HPV16, combined with HTK16, presents a unique system to identify host genes whose products functionally interact with HPV16 to regulate host cellular growth in oral keratinocytes.ImportanceHead and neck cancer is the sixth most common cancer worldwide. The incidence of HPV+OPC has been rising steadily since the 1970s and has recently reached epidemic proportions, according to the WHO. Upwards of 70% of the 600,000 new OPC cases per year are HPV positive, with high-risk type 16 present in 90% of those incidences. A better understanding of the viral life cycle will facilitate the development of novel therapeutics to combat this ongoing epidemic, as well as other HPV positive cancers. Here we present a unique oral keratinocyte model to identify host proteins that specifically interact with HPV16. Using this system, we report that a cellular gene, SAMHD1, is regulated by HPV16 at the RNA and protein level in oral keratinocytes. Elimination of SAMHD1 from these cells using CRISPR/Cas9 editing promotes enhanced cellular proliferation by HPV16 in oral keratinocytes and elevated viral replication, but not in keratinocytes that do not have HPV16. Our study demonstrates a specific intricate interplay between HPV16 and SAMHD1 during the viral life cycle and establishes a unique model system to assist exploring host factors critical for HPV pathogenesis.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Claire D. James ◽  
Dipon Das ◽  
Ethan L. Morgan ◽  
Raymonde Otoa ◽  
Andrew Macdonald ◽  
...  

ABSTRACT Human papillomaviruses recruit a host of DNA damage response factors to their viral genome to facilitate homologous recombination replication in association with the viral replication factors E1 and E2. We previously demonstrated that SIRT1 deacetylation of WRN promotes recruitment of WRN to E1-E2 replicating DNA and that WRN regulates both the levels and fidelity of E1-E2 replication. The deacetylation of WRN by SIRT1 results in an active protein able to complex with replicating DNA, but a protein that is less stable. Here, we demonstrate an inverse correlation between SIRT1 and WRN in CIN cervical lesions compared to normal control tissue, supporting our model of SIRT1 deacetylation destabilizing WRN protein. We CRISPR/Cas9 edited N/Tert-1 and N/Tert-1+HPV16 cells to knock out WRN protein expression and subjected the cells to organotypic raft cultures. In N/Tert-1 cells without WRN expression, there was enhanced basal cell proliferation, DNA damage, and thickening of the differentiated epithelium. In N/Tert-1+HPV16 cells, there was enhanced basal cell proliferation, increased DNA damage throughout the epithelium, and increased viral DNA replication. Overall, the results demonstrate that the expression of WRN is required to control the proliferation of N/Tert-1 cells and controls the HPV16 life cycle in these cells. This complements our previous data demonstrating that WRN controls the levels and fidelity of HPV16 E1-E2 DNA replication. The results describe a new role for WRN, a tumor suppressor, in controlling keratinocyte differentiation and the HPV16 life cycle. IMPORTANCE HPV16 is the major human viral carcinogen, responsible for around 3 to 4% of all cancers worldwide. Our understanding of how the viral replication machinery interacts with host factors to control/activate the DNA damage response to promote the viral life cycle remains incomplete. Recently, we demonstrated a SIRT1-WRN axis that controls HPV16 replication, and here we demonstrate that this axis persists in clinical cervical lesions induced by HPV16. Here, we describe the effects of WRN depletion on cellular differentiation with or without HPV16; WRN depletion results in enhanced proliferation and DNA damage irrespective of HPV16 status. Also, WRN is a restriction factor for the viral life cycle since replication is disrupted in the absence of WRN. Future studies will focus on enhancing our understanding of how WRN regulates viral replication. Our goal is to ultimately identify cellular factors essential for HPV16 replication that can be targeted for therapeutic gain.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 772
Author(s):  
Isao Murakami ◽  
Takashi Iwata ◽  
Tohru Morisada ◽  
Kyoko Tanaka ◽  
Daisuke Aoki

Several human papillomaviruses (HPV) are associated with the development of cervical carcinoma. HPV DNA synthesis is increased during the differentiation of infected host keratinocytes as they migrate from the basal layer of the epithelium to the spinous layer, but the molecular mechanism is unclear. Nucleosome positioning affects various cellular processes such as DNA replication and repair by permitting the access of transcription factors to promoters to initiate transcription. In this study, nucleosome positioning on virus chromatin was investigated in normal immortalized keratinocytes (NIKS) stably transfected with HPV16 or HPV18 genomes to determine if there is an association with the viral life cycle. Micrococcal nuclease-treated DNA analyzed by Southern blotting using probes against HPV16 and HPV18 and quantified by nucleosome scanning analysis using real-time PCR revealed mononucleosomal-sized fragments of 140–200 base pairs that varied in their location within the viral genome according to whether the cells were undergoing proliferation or differentiation. Notably, changes in the regions around nucleotide 110 in proliferating and differentiating host cells were common to HPV16 and HPV18. Our findings suggest that changes in nucleosome positions on viral DNA during host cell differentiation is an important regulatory event in the viral life cycle.


2017 ◽  
Vol 91 (16) ◽  
Author(s):  
Mun-Teng Wong ◽  
Steve S. Chen

ABSTRACT In this study, we elucidated the mechanism by which human choline kinase-α (hCKα) interacts with nonstructural protein 5A (NS5A) and phosphatidylinositol-4-kinase IIIα (PI4KIIIα), the lipid kinase crucial for maintaining the integrity of virus-induced membranous webs, and modulates hepatitis C virus (HCV) replication. hCKα activity positively modulated phosphatidylinositol-4-phosphate (PI4P) levels in HCV-expressing cells, and hCKα-mediated PI4P accumulation was abolished by AL-9, a PI4KIIIα-specific inhibitor. hCKα colocalized with NS5A and PI4KIIIα or PI4P; NS5A expression increased hCKα and PI4KIIIα colocalization; and hCKα formed a ternary complex with PI4KIIIα and NS5A, supporting the functional interplay of hCKα with PI4KIIIα and NS5A. PI4KIIIα inactivation by AL-9 or hCKα inactivation by CK37, a specific hCKα inhibitor, impaired the endoplasmic reticulum (ER) localization and colocalization of these three molecules. Interestingly, hCKα knockdown or inactivation inhibited PI4KIIIα-NS5A binding. In an in vitro PI4KIIIα activity assay, hCKα activity slightly increased PI4KIIIα basal activity but greatly augmented NS5A-induced PI4KIIIα activity, supporting the essential role of ternary complex formation in robust PI4KIIIα activation. Concurring with the upregulation of PI4P production and viral replication, overexpression of active hCKα-R (but not the D288A mutant) restored PI4KIIIα and NS5A translocation to the ER in hCKα stable knockdown cells. Furthermore, active PI4KIIIα overexpression restored PI4P production, PI4KIIIα and NS5A translocation to the ER, and viral replication in CK37-treated cells. Based on our results, hCKα functions as an indispensable regulator that bridges PI4KIIIα and NS5A and potentiates NS5A-stimulated PI4KIIIα activity, which then facilitates the targeting of the ternary complex to the ER for viral replication. IMPORTANCE The mechanisms by which hCKα activity modulates the transport of the hCKα-NS5A complex to the ER are not understood. In the present study, we investigated how hCKα interacts with PI4KIIIα (a key element that maintains the integrity of the “membranous web” structure) and NS5A to regulate viral replication. We demonstrated that HCV hijacks hCKα to bridge PI4KIIIα and NS5A, forming a ternary complex, which then stimulates PI4KIIIα activity to produce PI4P. Pronounced PI4P synthesis then redirects the translocation of the ternary complex to the ER-derived, PI4P-enriched membrane for assembly of the viral replication complex and viral replication. Our study provides novel insights into the indispensable modulatory role of hCKα in the recruitment of PI4KIIIα to NS5A and in NS5A-stimulated PI4P production and reveals a new perspective for understanding the impact of profound PI4KIIIα activation on the targeting of PI4KIIIα and NS5A to the PI4P-enriched membrane for viral replication complex formation.


2011 ◽  
Vol 54 ◽  
pp. S311 ◽  
Author(s):  
S. Clement ◽  
C. Fauvelle ◽  
S. Pascarella ◽  
S. Conzelmann ◽  
V. Kaddai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document