scholarly journals A Japanese Encephalitis Virus Genotype 5 Molecular Clone Is Highly Neuropathogenic in a Mouse Model: Impact of the Structural Protein Region on Virulence

2015 ◽  
Vol 89 (11) ◽  
pp. 5862-5875 ◽  
Author(s):  
Mélissanne de Wispelaere ◽  
Marie-Pascale Frenkiel ◽  
Philippe Desprès

ABSTRACTJapanese encephalitis virus (JEV) strains can be separated into 5 genotypes (g1 to g5) based on sequence similarity. JEV g5 strains have been rarely isolated and are poorly characterized. We report here the full characterization of a g5 virus generated using a cDNA-based technology and its comparison with a widely studied g3 strain. We did not observe any major differences between those viruses when their infectious cycles were studied in various cell linesin vitro. Interestingly, the JEV g5 strain was highly pathogenic when inoculated to BALB/c mice, which are known to be largely resistant to JEV g3 infection. The study of chimeric viruses between JEV g3 and g5 showed that there was a poor viral clearance of viruses that express JEV g5 structural proteins in BALB/c mice blood, which correlated with viral invasion of the central nervous system and encephalitis. In addition, using anin vitromodel of the blood-brain barrier, we were able to show that JEV g5 does not have an enhanced capacity for entering the central nervous system, compared to JEV g3. Overall, in addition to providing a first characterization of the understudied JEV g5, our work highlights the importance of sustaining an early viremia in the development of JEV encephalitis.IMPORTANCEGenotype 5 viruses are genetically and serologically distinct from other JEV genotypes and can been associated with human encephalitis, which warrants the need for their characterization. In this study, we characterized thein vitroandin vivoproperties of a JEV g5 strain and showed that it was more neuropathogenic in a mouse model than a well-characterized JEV g3 strain. The enhanced virulence of JEV g5 was associated with poor viral clearance but not with enhanced crossing of the blood-brain barrier, thus providing new insights into JEV pathogenesis.

2015 ◽  
Vol 89 (10) ◽  
pp. 5602-5614 ◽  
Author(s):  
Fang Li ◽  
Yueyun Wang ◽  
Lan Yu ◽  
Shengbo Cao ◽  
Ke Wang ◽  
...  

ABSTRACTJapanese encephalitis is an acute zoonotic, mosquito-borne disease caused by Japanese encephalitis virus (JEV). Japanese encephalitis is characterized by extensive inflammation in the central nervous system (CNS) and disruption of the blood-brain barrier (BBB). However, the pathogenic mechanisms contributing to the BBB disruption are not known. Here, using a mouse model of intravenous JEV infection, we show that virus titers increased exponentially in the brain from 2 to 5 days postinfection. This was accompanied by an early, dramatic increase in the level of inflammatory cytokines and chemokines in the brain. Enhancement of BBB permeability, however, was not observed until day 4, suggesting that viral entry and the onset of inflammation in the CNS occurred prior to BBB damage.In vitrostudies revealed that direct infection with JEV could not induce changes in the permeability of brain microvascular endothelial cell monolayers. However, brain extracts derived from symptomatic JEV-infected mice, but not from mock-infected mice, induced significant permeability of the endothelial monolayer. Consistent with a role for inflammatory mediators in BBB disruption, the administration of gamma interferon-neutralizing antibody ameliorated the enhancement of BBB permeability in JEV-infected mice. Taken together, our data suggest that JEV enters the CNS, propagates in neurons, and induces the production of inflammatory cytokines and chemokines, which result in the disruption of the BBB.IMPORTANCEJapanese encephalitis (JE) is the leading cause of viral encephalitis in Asia, resulting in 70,000 cases each year, in which approximately 20 to 30% of cases are fatal, and a high proportion of patients survive with serious neurological and psychiatric sequelae. Pathologically, JEV infection causes an acute encephalopathy accompanied by BBB dysfunction; however, the mechanism is not clear. Thus, understanding the mechanisms of BBB disruption in JEV infection is important. Our data demonstrate that JEV gains entry into the CNS prior to BBB disruption. Furthermore, it is not JEV infectionper se, but the inflammatory cytokines/chemokines induced by JEV infection that inhibit the expression of TJ proteins and ultimately result in the enhancement of BBB permeability. Neutralization of gamma interferon (IFN-γ) ameliorated the enhancement of BBB permeability in JEV-infected mice, suggesting that IFN-γ could be a potential therapeutic target. This study would lead to identification of potential therapeutic avenues for the treatment of JEV infection.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Valerie Redant ◽  
Herman W. Favoreel ◽  
Kai Dallmeier ◽  
Willem Van Campe ◽  
Nick De Regge

Abstract Background Japanese encephalitis virus (JEV) is the leading cause of viral encephalitis in Asia. JEV infection of mice and humans can lead to an uncontrolled inflammatory response in the central nervous system (CNS), resulting in a detrimental outcome. Pigs act as important amplification and reservoir hosts, and JEV infection of pigs is mostly subclinical. Information on virus spread in the CNS and immune responses controlling JEV infection in the CNS of pigs, however remains scarce. Methods Nine-week-old pigs were inoculated intranasal or intradermal with a relevant dose of 105 TCID50 of JEV genotype 3 Nakayama strain. Clinical signs were assessed daily, and viral spread was followed by RT-qPCR. mRNA expression profiles were determined to study immune responses in the CNS. Results Besides a delay of 2 days to reach the peak viremia upon intranasal compared to intradermal inoculation, the overall virus spread via both inoculation routes was highly similar. JEV appearance in lymphoid and visceral organs was in line with a blood-borne JEV dissemination. JEV showed a particular tropism to the CNS but without the induction of neurological signs. JEV entry in the CNS probably occurred via different hematogenous and neuronal pathways, but replication in the brain was mostly efficiently suppressed and associated with a type I IFN-independent activation of OAS1 expression. In the olfactory bulb and thalamus, where JEV replication was not completely controlled by this mechanism, a short but strong induction of chemokine gene expression was detected. An increased IFNy expression was simultaneously observed, probably originating from infiltrating T cells, correlating with a fast suppression of JEV replication. The chemokine response was however not associated with the induction of a strong inflammatory response, nor was an induction of the NLRP3 inflammasome observed. Conclusions These findings indicate that an adequate antiviral response and an attenuated inflammatory response contribute to a favorable outcome of JEV infection in pigs and help to explain the limited neurological disease compared to other hosts. We show that the NLRP3 inflammasome, a key mediator of neurologic disease in mice, is not upregulated in pigs, further supporting its important role in JEV infections.


Author(s):  
Prithiv K R Kumar

Stem cells have the capacity to differentiate into any type of cell or organ. Stems cell originate from any part of the body, including the brain. Brain cells or rather neural stem cells have the capacitive advantage of differentiating into the central nervous system leading to the formation of neurons and glial cells. Neural stem cells should have a source by editing DNA, or by mixings chemical enzymes of iPSCs. By this method, a limitless number of neuron stem cells can be obtained. Increase in supply of NSCs help in repairing glial cells which in-turn heal the central nervous system. Generally, brain injuries cause motor and sensory deficits leading to stroke. With all trials from novel therapeutic methods to enhanced rehabilitation time, the economy and quality of life is suppressed. Only PSCs have proven effective for grafting cells into NSCs. Neurons derived from stem cells is the only challenge that limits in-vitro usage in the near future.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2104 ◽  
Author(s):  
Eleonora Ficiarà ◽  
Shoeb Anwar Ansari ◽  
Monica Argenziano ◽  
Luigi Cangemi ◽  
Chiara Monge ◽  
...  

Magnetic Oxygen-Loaded Nanobubbles (MOLNBs), manufactured by adding Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on the surface of polymeric nanobubbles, are investigated as theranostic carriers for delivering oxygen and chemotherapy to brain tumors. Physicochemical and cyto-toxicological properties and in vitro internalization by human brain microvascular endothelial cells as well as the motion of MOLNBs in a static magnetic field were investigated. MOLNBs are safe oxygen-loaded vectors able to overcome the brain membranes and drivable through the Central Nervous System (CNS) to deliver their cargoes to specific sites of interest. In addition, MOLNBs are monitorable either via Magnetic Resonance Imaging (MRI) or Ultrasound (US) sonography. MOLNBs can find application in targeting brain tumors since they can enhance conventional radiotherapy and deliver chemotherapy being driven by ad hoc tailored magnetic fields under MRI and/or US monitoring.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1372
Author(s):  
Tengrui Shi ◽  
Jianxi Song ◽  
Guanying You ◽  
Yujie Yang ◽  
Qiong Liu ◽  
...  

MsrB1 used to be named selenoprotein R, for it was first identified as a selenocysteine containing protein by searching for the selenocysteine insert sequence (SECIS) in the human genome. Later, it was found that MsrB1 is homologous to PilB in Neisseria gonorrhoeae, which is a methionine sulfoxide reductase (Msr), specifically reducing L-methionine sulfoxide (L-Met-O) in proteins. In humans and mice, four members constitute the Msr family, which are MsrA, MsrB1, MsrB2, and MsrB3. MsrA can reduce free or protein-containing L-Met-O (S), whereas MsrBs can only function on the L-Met-O (R) epimer in proteins. Though there are isomerases existent that could transfer L-Met-O (S) to L-Met-O (R) and vice-versa, the loss of Msr individually results in different phenotypes in mice models. These observations indicate that the function of one Msr cannot be totally complemented by another. Among the mammalian Msrs, MsrB1 is the only selenocysteine-containing protein, and we recently found that loss of MsrB1 perturbs the synaptic plasticity in mice, along with the astrogliosis in their brains. In this review, we summarized the effects resulting from Msr deficiency and the bioactivity of selenium in the central nervous system, especially those that we learned from the MsrB1 knockout mouse model. We hope it will be helpful in better understanding how the trace element selenium participates in the reduction of L-Met-O and becomes involved in neurobiology.


Sign in / Sign up

Export Citation Format

Share Document