methionine sulfoxide reductase
Recently Published Documents


TOTAL DOCUMENTS

449
(FIVE YEARS 86)

H-INDEX

55
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Sara El Hajj ◽  
Camille Henry ◽  
Camille Andrieu ◽  
Alexandra Vergnes ◽  
Laurent Loiseau ◽  
...  

Two-component systems (TCS) are signalling pathways that allow bacterial cells to sense, respond and adapt to fluctuating environments. Among the classical TCS of Escherichia coli , HprSR has recently been shown to be involved in the regulation of msrPQ , which encodes the periplasmic methionine sulfoxide reductase system. In this study, we demonstrate that hypochlorous acid (HOCl) induces the expression of msrPQ in an HprSR-dependant manner, whereas H 2 O 2 , NO and paraquat (a superoxide generator) do not. Therefore, HprS appears to be an HOCl-sensing histidine kinase. Using a directed mutagenesis approach, we show that Met residues located in the periplasmic loop of HprS are important for its activity: as HOCl preferentially oxidizes Met residues, we provide evidence that HprS could be activated via the reversible oxidation of its methionine residues, meaning that MsrPQ plays a role in switching HprSR off. We propose that the activation of HprS by HOCl could occur through a Met redox switch. HprSR appears to be the first characterized TCS able to detect reactive chlorine species (RCS) in E. coli . This study represents an important step towards understanding the mechanisms of RCS resistance in prokaryotes. IMPORTANCE Understanding how bacteria respond to oxidative stress at the molecular level is crucial in the fight against pathogens. HOCl is one of the most potent industrial and physiological microbiocidal oxidants. Therefore bacteria have developed counterstrategies to survive HOCl-induced stress. Over the last decade, important insights into these bacterial protection factors have been obtained. Our work establishes HprSR as a reactive chlorine species-sensing, two-component system in Escherichia coli MG1655, which regulates the expression of MsrPQ, a repair system for HOCl-oxidized proteins. Moreover we provide evidence suggesting that HOCl could activate HprS through a methionine redox switch.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1478
Author(s):  
Urban Alehagen ◽  
Trine B. Opstad ◽  
Jan Alexander ◽  
Anders Larsson ◽  
Jan Aaseth

Selenium (Se) is an essential dietary trace element that plays an important role in the prevention of inflammation, cardiovascular diseases, infections, and cancer. Selenoproteins contain selenocysteine in the active center and include, i.e., the enzymes thioredoxin reductases (TXNRD1–3), glutathione peroxidases (GPX1–4 and GPX6) and methionine sulfoxide reductase, involved in immune functions, metabolic homeostasis, and antioxidant defense. Ageing is an inevitable process, which, i.e., involves an imbalance between antioxidative defense and reactive oxygen species (ROS), changes in protein and mitochondrial renewal, telomere attrition, cellular senescence, epigenetic alterations, and stem cell exhaustion. These conditions are associated with mild to moderate inflammation, which always accompanies the process of ageing and age-related diseases. In older individuals, Se, by being a component in protective enzymes, operates by decreasing ROS-mediated inflammation, removing misfolded proteins, decreasing DNA damage, and promoting telomere length. Se-dependent GPX1–4 and TXNRD1–3 directly suppress oxidative stress. Selenoprotein H in the cell nucleus protects DNA, and selenoproteins residing in the endoplasmic reticulum (ER) assist in the removal of misfolded proteins and protection against ER stress. In this review, we highlight the role of adequate Se status for human ageing and prevention of age-related diseases, and further its proposed role in preservation of telomere length in middle-aged and elderly individuals.


2021 ◽  
Author(s):  
Kevin M. Thyne ◽  
Adam B. Salmon

Abstract Methionine restriction (MR) extends lifespan and improves several markers of health in rodents. However, the proximate mechanisms of MR on these physiological benefits have not been fully elucidated. The essential amino acid methionine plays numerous biological roles and limiting its availability in the diet directly modulates methionine metabolism. There is growing evidence that redox regulation of methionine has regulatory control on some aspects of cellular function but interactions with MR remain largely unexplored. We tested the functional role of the ubiquitously expressed methionine repair enzyme methionine sulfoxide reductase A (MsrA) on the metabolic benefits of MR in mice. MsrA catalytically reduces both free and protein-bound oxidized methionine, thus playing a key role in its redox state. We tested the extent to which MsrA is required for metabolic effects of MR in adult mice using mice lacking MsrA. As expected, MR in control mice reduced body weight, altered body composition, and improved glucose metabolism. Interestingly, lack of MsrA did not impair the metabolic effects of MR on these outcomes. Moreover, females had blunted MR responses regardless of MsrA status compared to males. Overall, our data suggests that MsrA is not required for the metabolic benefits of MR in adult mice.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1467
Author(s):  
Mariano Catanesi ◽  
Laura Brandolini ◽  
Michele d’Angelo ◽  
Elisabetta Benedetti ◽  
Maria Grazia Tupone ◽  
...  

Methionine is an aliphatic, sulfur-containing, essential amino acid that has been demonstrated to have crucial roles in metabolism, innate immunity, and activation of endogenous antioxidant enzymes, including methionine sulfoxide reductase A/B and the biosynthesis of glutathione to counteract oxidative stress. Still, methionine restriction avoids altered methionine/transmethylation metabolism, thus reducing DNA damage and possibly avoiding neurodegenerative processes. In this study, we wanted to study the preventive effects of methionine in counteracting 6-hydroxydopamine (6-OHDA)-induced injury. In particular, we analyzed the protective effects of the amino acid L-methionine in an in vitro model of Parkinson’s disease and dissected the underlying mechanisms compared to the known antioxidant taurine to gain insights into the potential of methionine treatment in slowing the progression of the disease by maintaining mitochondrial functionality. In addition, to ascribe the effects of methionine on mitochondria and oxidative stress, methionine sulfoxide was used in place of methionine. The data obtained suggested that an L-methionine-enriched diet could be beneficial during aging to protect neurons from oxidative imbalance and mitochondrial dysfunction, thus preventing the progression of neurodegenerative processes.


2021 ◽  
Author(s):  
Sara El Hajj ◽  
Camille Henry ◽  
Alexandra Vergnes ◽  
Laurent Loiseau ◽  
Brasseur Gael ◽  
...  

Two component systems (TCS) are signalling pathways that allow bacterial cells to sense, respond and adapt to fluctuating environments. Among the classical TCS of Escherichia coli, YedVW has been recently showed to be involved in the regulation of msrPQ, encoding for the periplasmic methionine sulfoxide reductase system. In this study, we demonstrate that hypochlorous acid (HOCl) induces the expression of msrPQ in a YedVW dependant manner, whereas H2O2, NO and paraquat (a superoxide generator) do not. Therefore, YedV appears to be an HOCl-sensing histidine kinase. Based on this finding, we proposed to rename this system HypVW.  Moreover, using a directed mutagenesis approach, we show that Met residues located in the periplasmic loop of HypV (formerly YedV) are important for its activity. Given that HOCl oxidizes preferentially Met residues, we bring evidences that HypV could be activated via the reversible oxidation of its methionine residues, thus conferring to MsrPQ a role in switching HypVW off. Based on these results, we propose that the activation of HypV by HOCl could occur through a Met redox switch. HypVW appears to be the first characterized TCS able to detect HOCl in E. coli. This study represents an important step in understanding the mechanisms of reactive chlorine species resistance in prokaryotes.


Author(s):  
Jin Ki Jung ◽  
Ga-Eun Yoon ◽  
GiBong Jang ◽  
Kwon Moo Park ◽  
InKyeom Kim ◽  
...  

Hydrogen sulfide (H 2 S) is an endogenous gaseous antioxidant and antihypertensive molecule produced during the homocysteine metabolism. MsrA (methionine sulfoxide reductase A) enables the metabolism of homocysteine by reducing methionine sulfoxide to methionine. Although HDAC (histone deacetylase) inhibition has been reported to show blood pressure lowering effects, their effects on endogenous H 2 S production are largely unknown. Here, we assessed the relevance of MsrA in high-fat diet (HFD)-induced hypertension and the effect of HDAC inhibition on MsrA expression, H 2 S production, and hypertension. Male C57BL/6 mice were fed a normal diet or HFD. HFD increased blood pressure and activities of HDAC3 and 6 but downregulated MsrA in the mesenteric arteries and the serum H 2 S level. HFD upregulated 4 hydroxynonenal, TNF (tumor necrosis factor)-α, and IL (interleukin)-6, and vasocontractile proteins. The histone H3 acetylation of the MsrA promoter was decreased by HFD. In hypertensive HFD-fed mice, administration of the HDAC inhibitor CG200745 lowered blood pressure and increased serum H 2 S level. CG200745 increased acetylation of histone H3 and MsrA levels in the mesenteric arteries while downregulating oxidative stress, inflammation, and vasocontractile proteins. Silencing of MsrA in the vascular smooth muscle cells recapitulated HFD-induced in vivo hypertensive effects. CG200745 increased the histone H3 acetylation of the MsrA promoter, MsrA expression, and H 2 S production in vascular smooth muscle cells, supporting the in vivo results. Collectively, HFD-induced downregulation of MsrA plays a pivotal role in HFD-induced hypertension by reducing H 2 S levels. MsrA expression is epigenetically regulated by HDAC inhibitors, providing HDAC inhibitors as a therapeutic option and MsrA and H 2 S as novel therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document