scholarly journals A Single-Amino-Acid Substitution in a Polymerase Protein of an H5N1 Influenza Virus Is Associated with Systemic Infection and Impaired T-Cell Activation in Mice

2009 ◽  
Vol 83 (21) ◽  
pp. 11102-11115 ◽  
Author(s):  
Jamie L. Fornek ◽  
Laura Gillim-Ross ◽  
Celia Santos ◽  
Victoria Carter ◽  
Jerrold M. Ward ◽  
...  

ABSTRACT The transmission of H5N1 influenza viruses from birds to humans poses a significant public health threat. A substitution of glutamic acid for lysine at position 627 of the PB2 protein of H5N1 viruses has been identified as a virulence determinant. We utilized the BALB/c mouse model of H5N1 infection to examine how this substitution affects virus-host interactions and leads to systemic infection. Mice infected with H5N1 viruses containing lysine at amino acid 627 in the PB2 protein exhibited an increased severity of lesions in the lung parenchyma and the spleen, increased apoptosis in the lungs, and a decrease in oxygen saturation. Gene expression profiling revealed that T-cell receptor activation was impaired at 2 days postinfection (dpi) in the lungs of mice infected with these viruses. The inflammatory response was highly activated in the lungs of mice infected with these viruses and was sustained at 4 dpi. In the spleen, immune-related processes including NK cell cytotoxicity and antigen presentation were highly activated by 2 dpi. These differences are not attributable solely to differences in viral replication in the lungs but to an inefficient immune response early in infection as well. The timing and magnitude of the immune response to highly pathogenic influenza viruses is critical in determining the outcome of infection. The disruption of these factors by a single-amino-acid substitution in a polymerase protein of an influenza virus is associated with severe disease and correlates with the spread of the virus to extrapulmonary sites.

2008 ◽  
Vol 0 (0) ◽  
pp. 080305221334077-??? ◽  
Author(s):  
Masashi Kondo ◽  
Hideo Kaneko ◽  
Toshiyuki Fukao ◽  
Kiyotaka Suzuki ◽  
Heima Sakaguchi ◽  
...  

2007 ◽  
Vol 82 (3) ◽  
pp. 1146-1154 ◽  
Author(s):  
Peirong Jiao ◽  
Guobin Tian ◽  
Yanbing Li ◽  
Guohua Deng ◽  
Yongping Jiang ◽  
...  

ABSTRACT In this study, we explored the molecular basis determining the virulence of H5N1 avian influenza viruses in mammalian hosts by comparing two viruses, A/Duck/Guangxi/12/03 (DK/12) and A/Duck/Guangxi/27/03 (DK/27), which are genetically similar but differ in their pathogenicities in mice. To assess the genetic basis for this difference in virulence, we used reverse genetics to generate a series of reassortants and mutants of these two viruses. We found that a single-amino-acid substitution of serine for proline at position 42 (P42S) in the NS1 protein dramatically increased the virulence of the DK/12 virus in mice, whereas the substitution of proline for serine at the same position (S42P) completely attenuated the DK/27 virus. We further demonstrated that the amino acid S42 of NS1 is critical for the H5N1 influenza virus to antagonize host cell interferon induction and for the NS1 protein to prevent the double-stranded RNA-mediated activation of the NF-κB pathway and the IRF-3 pathway. Our results indicate that the NS1 protein is critical for the pathogenicity of H5N1 influenza viruses in mammalian hosts and that the amino acid S42 of NS1 plays a key role in undermining the antiviral immune response of the host cell.


1991 ◽  
Vol 21 (2) ◽  
pp. 483-488 ◽  
Author(s):  
Toshiyasu Hirama ◽  
Sunao Takeshita ◽  
Yuji Matsubayashi ◽  
Michihiro Iwashiro ◽  
Tohru Masuda ◽  
...  

Immunity ◽  
1995 ◽  
Vol 2 (4) ◽  
pp. 373-380 ◽  
Author(s):  
Anja Windhagen ◽  
Christian Schooz ◽  
Per Höllsberg ◽  
Hikoaki Fukaura ◽  
Alessandro Sette ◽  
...  

Science ◽  
1986 ◽  
Vol 231 (4735) ◽  
pp. 255-258 ◽  
Author(s):  
M. Brown ◽  
L. Glimcher ◽  
E. Nielsen ◽  
W. Paul ◽  
R. Germain

Sign in / Sign up

Export Citation Format

Share Document