cell receptor
Recently Published Documents


TOTAL DOCUMENTS

14938
(FIVE YEARS 2672)

H-INDEX

253
(FIVE YEARS 29)

2022 ◽  
Vol 3 (1) ◽  
pp. 101031
Author(s):  
Carolin Moosmann ◽  
Thomas R. Müller ◽  
Dirk H. Busch ◽  
Kilian Schober

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 408
Author(s):  
Noemí Muñoz-García ◽  
F. Morán-Plata ◽  
Neus Villamor ◽  
Margarida Lima ◽  
Susana Barrena ◽  
...  

Flow cytometric (FCM) analysis of the constant region 1 of the T-cell receptor β chain (TRBC1) expression for assessing Tαβ-cell clonality has been recently validated. However, its utility for the diagnosis of clonality of T-large granular lymphocytic leukemia (T-LGLL) needs to be confirmed, since more mature Tαβ cells (i.e., T-LGL normal-counterpart) show broader TRBC1+/TRBC1− ratios vs. total Tαβ cells. We compared the distribution and absolute counts of TRBC1+ and TRBC1− Tαβ-LGL in blood containing polyclonal (n = 25) vs. clonal (n = 29) LGL. Overall, polyclonal TRBC1+ or TRBC1− Tαβ-LGL ranged between 0.36 and 571 cells/μL (3.2–91% TRBC1+ cells), whereas the clonal LGL cases showed between 51 and 11,678 cells/μL (<0.9% or >96% TRBC1+ cells). Among the distinct TCRVβ families, the CD28− effector-memory and terminal-effector polyclonal Tαβ cells ranged between 0 and 25 TRBC1+ or TRBC1− cells/μL and between 0 and 100% TRBC1+ cells, while clonal LGL ranged between 32 and 5515 TRBC1+ or TRBC1− cells/μL, representing <1.6% or >98% TRBC1+ cells. Our data support the utility of the TRBC1-FCM assay for detecting T-cell clonality in expansions of Tαβ-LGL suspected of T-LGLL based on altered percentages of TRBC1+ Tαβ cells. However, in the absence of lymphocytosis or in the case of TαβCD4-LGL expansion, the detection of increased absolute cell counts by the TRBC1-FCM assay for more accurately defined subpopulations of Tαβ-LGL-expressing individual TCRVβ families, allows the detection of T-cell clonality, even in the absence of phenotypic aberrations.


Author(s):  
Avi J. Samelson ◽  
Quang Dinh Tran ◽  
Rémy Robinot ◽  
Lucia Carrau ◽  
Veronica V. Rezelj ◽  
...  

2022 ◽  
pp. annrheumdis-2021-220500
Author(s):  
Changrong Ge ◽  
Sylvia Weisse ◽  
Bingze Xu ◽  
Doreen Dobritzsch ◽  
Johan Viljanen ◽  
...  

ObjectivesRheumatoid arthritis (RA) is an autoimmune disease strongly associated with the major histocompatibility complex (MHC) class II allele DRB1*04:01, which encodes a protein that binds self-peptides for presentation to T cells. This study characterises the autoantigen-presenting function of DRB1*04:01 (HLA-DRA*01:01/HLA-DRB1*04:01) at a molecular level for prototypic T-cell determinants, focusing on a post-translationally modified collagen type II (Col2)-derived peptide.MethodsThe crystal structures of DRB1*04:01 molecules in complex with the peptides HSP70289-306, citrullinated CILP982-996 and galactosylated Col2259-273 were determined on cocrystallisation. T cells specific for Col2259-273 were investigated in peripheral blood mononuclear cells from patients with DRB1*04:01-positive RA by cytofluorometric detection of the activation marker CD154 on peptide stimulation and binding of fluorescent DRB1*0401/Col2259-273 tetramer complexes. The cDNAs encoding the T-cell receptor (TCR) α-chains and β-chains were cloned from single-cell sorted tetramer-positive T cells and transferred via a lentiviral vector into TCR-deficient Jurkat 76 cells.ResultsThe crystal structures identified peptide binding to DRB1*04:01 and potential side chain exposure to T cells. The main TCR recognition sites in Col2259-273 were lysine residues that can be galactosylated. RA T-cell responses to DRB1*04:01-presented Col2259-273 were dependent on peptide galactosylation at lysine 264. Dynamic molecular modelling of a functionally characterised Col2259-273-specific TCR complexed with DRB1*04:01/Col2259-273 provided evidence for differential allosteric T-cell recognition of glycosylated lysine 264.ConclusionsThe MHC-peptide-TCR interactions elucidated in our study provide new molecular insights into recognition of a post-translationally modified RA T-cell determinant with a known dominant role in arthritogenic and tolerogenic responses in murine Col2-induced arthritis.


2022 ◽  
Author(s):  
Grant M Zane ◽  
Mark A Silveria ◽  
Nancy L Meyer ◽  
Tommi A White ◽  
Michael S Chapman

Adeno-associated virus (AAV) is the vector of choice for several approved gene therapy treatments and is the basis for many ongoing clinical trials. Various strains of AAV exist (referred to as serotypes), each with their own transfection characteristics. Here, we present a high-resolution cryo-electron microscopy structure (2.2 Å) for AAV serotype 4 (AAV4). The receptor responsible for transduction of the AAV4 clade of AAV viruses (including AAV11, 12 and rh32.33) is unknown. Other AAVs interact with the same cell receptor, Adeno-associated virus receptor (AAVR), in one of two different ways. AAV5-like viruses interact exclusively with the polycystic kidney disease-like [PKD]-1 domain of AAVR while most other AAVs interact primarily with the PKD2 domain. A comparison of the present AAV4 structure with prior corresponding structures of AAV5, AAV2 and AAV1 in complex with AAVR, provides a foundation for understanding why the AAV4-like clade is unable to interact with either PKD1 or PKD2. The conformation of the AAV4 capsid in variable regions I, III, IV and V on the viral surface appears to be sufficiently different from AAV2 to ablate binding with PKD2. Differences between AAV4 and AAV5 in variable region VII appear sufficient to exclude binding with PKD1.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Sara Hernández-Pérez ◽  
Pieta K. Mattila

AbstractFacilitated by the advancements in microscopy, our understanding of the complexity of intracellular vesicle traffic has dramatically increased in recent years. However, distinguishing between plasma membrane-bound or internalised ligands remains a major challenge for the studies of cargo sorting to endosomal compartments, especially in small and round cells such as lymphocytes. The specific hybridization internalisation probe (SHIP) assay, developed for flow cytometry studies, employs a ssDNA fluorescence internalisation probe and a complementary ssDNA quenching probe to unambiguously detect the internalized receptors/cargo. Here, we adopted the SHIP assay to study the trafficking of receptor/ligand complexes using B lymphocytes and B cell receptor-mediated antigen internalization as a model system. Our study demonstrates the potential of the SHIP assay for improving the imaging of internalized receptor/ligand complexes and establishes the compatibility of this assay with multiple imaging modalities, including live-cell imaging and super-resolution microscopy.


Author(s):  
Christin Bartlitz ◽  
Rafał Kolenda ◽  
Jarosław Chilimoniuk ◽  
Krzysztof Grzymajło ◽  
Stefan Rödiger ◽  
...  

Pathogenic bacteria, such as enteropathogenic (EPEC) and enterotoxigenic Escherichia coli (ETEC), cause diarrhea in mammals. In particular, E. coli colonize and infect the gastrointestinal tract via type 1 fimbriae (T1F). Here the major zymogen granule membrane glycoprotein 2 (GP2) acts as host cell receptor. GP2 is also secreted by the pancreas and various mucous glands, interacting with luminal type 1 fimbriae-positive E. coli . It is unknown whether GP2 isoforms demonstrate specific E. coli pathotype binding. In this study, we investigated interactions of human, porcine and bovine EPEC, ETEC as well as commensal E. coli isolates with human, porcine and bovine GP2. We first defined pathotype- and host-associated FimH variants. Secondly, we could prove that GP2 isoforms bound to FimH variants to varying degrees. However, the GP2-FimH interactions did not seem to be influenced by the host specificity of E. coli . In contrast, soluble GP2 affected ETEC infection and phagocytosis rates of macrophages. Pre-incubation of ETEC pathotype with GP2 reduced infection of cell lines. Furthermore, pre-incubation of E. coli with GP2 improved the phagocytosis rate of macrophages. Our findings suggest that GP2 plays a role in the defense against E. coli infection and in the corresponding host immune response. IMPORTANCE Infection by pathogenic bacteria such as certain Escherichia coli pathotypes results in diarrhea in mammals. Pathogens, including zoonotic agents, can infect different hosts or show host-specificity. There are Escherichia coli strains which are frequently transmitted between humans and animals, whereas other Escherichia coli strains tend to colonize only one host. This host-specificity is still not fully understood. We show that glycoprotein 2 is a selective receptor for particular Escherichia coli strains or variants of the adhesin FimH but not a selector for a species-specific Escherichia coli group. We demonstrate that GP2 is involved in the regulation of colonization and infection and thus represents a molecule of interest for the prevention or treatment of disease.


Sign in / Sign up

Export Citation Format

Share Document