scholarly journals Opposing Effects of Inhibiting Cap Addition and Cap Methylation on Polyadenylation during Vesicular Stomatitis Virus mRNA Synthesis

2008 ◽  
Vol 83 (4) ◽  
pp. 1930-1940 ◽  
Author(s):  
Jianrong Li ◽  
Amal Rahmeh ◽  
Vesna Brusic ◽  
Sean P. J. Whelan

ABSTRACT The multifunctional large (L) polymerase protein of vesicular stomatitis virus (VSV) contains enzymatic activities essential for RNA synthesis, including mRNA cap addition and polyadenylation. We previously mapped amino acid residues G1154, T1157, H1227, and R1228, present within conserved region V (CRV) of L, as essential for mRNA cap addition. Here we show that alanine substitutions to these residues also affect 3′-end formation. Specifically, the cap-defective polymerases produced truncated transcripts that contained A-rich sequences at their 3′ termini and predominantly terminated within the first 500 nucleotides (nt) of the N gene. To examine how the cap-defective polymerases respond to an authentic VSV termination and reinitiation signal present at each gene junction, we reconstituted RNA synthesis using templates that contained genes inserted (I) at the leader-N gene junction. The I genes ranged in size from 382 to 1,098 nt and were typically transcribed into full-length uncapped transcripts. In addition to lacking a cap structure, the full-length I transcripts synthesized by the cap-defective polymerases lacked an authentic polyadenylate tail and instead contained 0 to 24 A residues. Moreover, the cap-defective polymerases were also unable to copy efficiently the downstream gene. Thus, single amino acid substitutions in CRV of L protein that inhibit cap addition also inhibit polyadenylation and sequential transcription of the genome. In contrast, an amino acid substitution, K1651A, in CRVI of L protein that completely inhibits cap methylation results in the hyperpolyadenylation of mRNA. This work reveals that inhibiting cap addition and cap methylation have opposing effects on polyadenylation during VSV mRNA synthesis and provides evidence in support of a link between correct 5′ cap formation and 3′ polyadenylation.

2005 ◽  
Vol 79 (12) ◽  
pp. 7327-7337 ◽  
Author(s):  
Valery Z. Grdzelishvili ◽  
Sherin Smallwood ◽  
Dallas Tower ◽  
Richard L. Hall ◽  
D. Margaret Hunt ◽  
...  

ABSTRACT The vesicular stomatitis virus (VSV) RNA polymerase synthesizes viral mRNAs with 5′-cap structures methylated at the guanine-N7 and 2′-O-adenosine positions (7mGpppAm). Previously, our laboratory showed that a VSV host range (hr) and temperature-sensitive (ts) mutant, hr1, had a complete defect in mRNA cap methylation and that the wild-type L protein could complement the hr1 defect in vitro. Here, we sequenced the L, P, and N genes of mutant hr1 and found only two amino acid substitutions, both residing in the L-polymerase protein, which differentiate hr1 from its wild-type parent. These mutations (N505D and D1671V) were introduced separately and together into the L gene, and their effects on VSV in vitro transcription and in vivo chloramphenicol acetyltransferase minigenome replication were studied under conditions that are permissive and nonpermissive for hr1. Neither L mutation significantly affected viral RNA synthesis at 34°C in permissive (BHK) and nonpermissive (HEp-2) cells, but D1671V reduced in vitro transcription and genome replication by about 50% at 40°C in both cell lines. Recombinant VSV bearing each mutation were isolated, and the hr and ts phenotypes in infected cells were the result of a single D1671V substitution in the L protein. While the mutations did not significantly affect mRNA synthesis by purified viruses, 5′-cap analyses of product mRNAs clearly demonstrated that the D1671V mutation abrogated all methyltransferase activity. Sequence analysis suggests that an aspartic acid at amino acid 1671 is a critical residue within a putative conserved S-adenosyl-l-methionine-binding domain of the L protein.


2016 ◽  
Vol 90 (14) ◽  
pp. 6598-6610 ◽  
Author(s):  
Ghizlane Maarifi ◽  
Zara Hannoun ◽  
Marie Claude Geoffroy ◽  
Faten El Asmi ◽  
Karima Zarrouk ◽  
...  

ABSTRACTMultiple cellular pathways are regulated by small ubiquitin-like modifier (SUMO) modification, including ubiquitin-mediated proteolysis, signal transduction, innate immunity, and antiviral defense. In the study described in this report, we investigated the effects of SUMO on the replication of two members of theRhabdoviridaefamily, vesicular stomatitis virus (VSV) and rabies virus (RABV). We show that stable expression of SUMO in human cells confers resistance to VSV infection in an interferon-independent manner. We demonstrate that SUMO expression did not alter VSV entry but blocked primary mRNA synthesis, leading to a reduction of viral protein synthesis and viral production, thus protecting cells from VSV-induced cell lysis. MxA is known to inhibit VSV primary transcription. Interestingly, we found that the MxA protein was highly stabilized in SUMO-expressing cells. Furthermore, extracts from cells stably expressing SUMO exhibited an increase in MxA oligomers, suggesting that SUMO plays a role in protecting MxA from degradation, thus providing a stable intracellular pool of MxA available to combat invading viruses. Importantly, MxA depletion in SUMO-expressing cells abrogated the anti-VSV effect of SUMO. Furthermore, SUMO expression resulted in interferon-regulatory factor 3 (IRF3) SUMOylation, subsequently decreasing RABV-induced IRF3 phosphorylation and interferon synthesis. As expected, this rendered SUMO-expressing cells more sensitive to RABV infection, even though MxA was stabilized in SUMO-expressing cells, since its expression did not confer resistance to RABV. Our findings demonstrate opposing effects of SUMO expression on two viruses of the same family, intrinsically inhibiting VSV infection through MxA stabilization while enhancing RABV infection by decreasing IFN induction.IMPORTANCEWe report that SUMO expression reduces interferon synthesis upon RABV or VSV infection. Therefore, SUMO renders cells more sensitive to RABV but unexpectedly renders cells resistant to VSV by blocking primary mRNA synthesis. Unlike the interferon-mediated innate immune response, intrinsic antiviral resistance is mediated by constitutively expressed restriction factors. Among the various anti-VSV restriction factors, only MxA is known to inhibit VSV primary transcription, and we show here that its expression does not alter RABV infection. Interestingly, MxA depletion abolished the inhibition of VSV by SUMO, demonstrating that MxA mediates SUMO-induced intrinsic VSV resistance. Furthermore, MxA oligomerization is known to be critical for its protein stability, and we show that higher levels of oligomers were formed in cells expressing SUMO than in wild-type cells, suggesting that SUMO may play a role in protecting MxA from degradation, providing a stable intracellular pool of MxA able to protect cells from viral infection.


2009 ◽  
Vol 83 (21) ◽  
pp. 11043-11050 ◽  
Author(s):  
Amal A. Rahmeh ◽  
Jianrong Li ◽  
Philip J. Kranzusch ◽  
Sean P. J. Whelan

ABSTRACT During conventional mRNA cap formation, two separate methyltransferases sequentially modify the cap structure, first at the guanine-N-7 (G-N-7) position and subsequently at the ribose 2′-O position. For vesicular stomatitis virus (VSV), a prototype of the nonsegmented negative-strand RNA viruses, the two methylase activities share a binding site for the methyl donor S-adenosyl-l-methionine and are inhibited by individual amino acid substitutions within the C-terminal domain of the large (L) polymerase protein. This led to the suggestion that a single methylase domain functions for both 2′-O and G-N-7 methylations. Here we report a trans-methylation assay that recapitulates both ribose 2′-O and G-N-7 modifications by using purified recombinant L and in vitro-synthesized RNA. Using this assay, we demonstrate that VSV L typically modifies the 2′-O position of the cap prior to the G-N-7 position and that G-N-7 methylation is diminished by pre-2′-O methylation of the substrate RNA. Amino acid substitutions in the C terminus of L that prevent all cap methylation in recombinant VSV (rVSV) partially retain the ability to G-N-7 methylate a pre-2′-O-methylated RNA, therefore uncoupling the effect of substitutions in the C terminus of the L protein on the two methylations. In addition, we show that the 2′-O and G-N-7 methylase activities act specifically on RNA substrates that contain the conserved elements of a VSV mRNA start at the 5′ terminus. This study provides new mechanistic insights into the mRNA cap methylase activities of VSV L, demonstrates that 2′-O methylation precedes and facilitates subsequent G-N-7 methylation, and reveals an RNA sequence and length requirement for the two methylase activities. We propose a model of regulation of the activity of the C terminus of L protein in 2′-O and G-N-7 methylation of the cap structure.


2005 ◽  
Vol 79 (13) ◽  
pp. 8101-8112 ◽  
Author(s):  
Subash C. Das ◽  
Asit K. Pattnaik

ABSTRACT The phosphoprotein (P protein) of vesicular stomatitis virus (VSV) is an essential subunit of the viral RNA-dependent RNA polymerase and has multiple functions residing in its different domains. In the present study, we examined the role of the hypervariable hinge region of P protein in viral RNA synthesis and recovery of infectious VSV by using transposon-mediated insertion mutagenesis and deletion mutagenesis. We observed that insertions of 19-amino-acid linker sequences at various positions within this region affected replication and transcription functions of the P protein to various degrees. Interestingly, one insertion mutant was completely defective in both transcription and replication. Using a series of deletion mutants spanning the hinge region of the protein, we observed that amino acid residues 201 through 220 are required for the activity of P protein in both replication and transcription. Neither insertion nor deletion had any effect on the interaction of P protein with N or L proteins. Infectious VSVs with a deletion in the hinge region possessed retarded growth characteristics and exhibited small-plaque morphology. Interestingly, VSV containing one P protein deletion mutant (PΔ7, with amino acids 141 through 200 deleted), which possessed significant levels of replication and transcription activity, could be amplified only by passage in cells expressing the wild-type P protein. We conclude that the hypervariable hinge region of the P protein plays an important role in viral RNA synthesis. Furthermore, our results provide a previously unidentified function for the P protein: it plays a critical role in the assembly of infectious VSV.


2009 ◽  
Vol 83 (11) ◽  
pp. 5525-5534 ◽  
Author(s):  
Debasis Nayak ◽  
Debasis Panda ◽  
Subash C. Das ◽  
Ming Luo ◽  
Asit K. Pattnaik

ABSTRACT The nucleocapsid protein (N) of vesicular stomatitis virus and other rhabdoviruses plays a central role in the assembly and template functions of the viral N-RNA complex. The crystal structure of the viral N-RNA complex suggests that the central region of the N protein interacts with the viral RNA. Sequence alignment of rhabdovirus N proteins revealed several highly conserved regions, one of which spanned residues 282 to 291 (GLSSKSPYSS) in the central region of the molecule. Alanine-scanning mutagenesis of this region suggested that replacement of the tyrosine residue at position 289 (Y289) with alanine resulted in an N-RNA template that is nonfunctional in viral genome replication and transcription. To establish the molecular basis of this defect, our further studies revealed that the Y289A mutant maintained its interaction with other N protein molecules but that its interactions with the P protein or with the viral RNA were defective. Replacement of Y289 with other aromatic, polar, or large amino acids indicated that the hydrophobic and aromatic nature of this position in the N protein is functionally important and that a larger aromatic residue is less favorable. Interestingly, we have observed that several single-amino-acid substitutions in this highly conserved region of the molecule rendered the nucleocapsid template nonfunctional in transcription without adversely affecting the replication functions. These results suggest that the structure of the N protein and the resulting N-RNA complex, in part, regulate the viral template functions in transcription and replication.


Sign in / Sign up

Export Citation Format

Share Document