scholarly journals NS5A Domain 1 and Polyprotein Cleavage Kinetics Are Critical for Induction of Double-Membrane Vesicles Associated with Hepatitis C Virus Replication

mBio ◽  
2015 ◽  
Vol 6 (4) ◽  
Author(s):  
Inés Romero-Brey ◽  
Carola Berger ◽  
Stephanie Kallis ◽  
Androniki Kolovou ◽  
David Paul ◽  
...  

ABSTRACTInduction of membrane rearrangements in the cytoplasm of infected cells is a hallmark of positive-strand RNA viruses. These altered membranes serve as scaffolds for the assembly of viral replication factories (RFs). We have recently shown that hepatitis C virus (HCV) infection induces endoplasmic reticulum-derived double-membrane vesicles (DMVs) representing the major constituent of the RF within the infected cell. RF formation requires the concerted action of nonstructural action of nonstructural protein (NS)3, -4A, protein (NS)3 -4A, -4B, -5A, and -5B. Although the sole expression of NS5A is sufficient to induce DMV formation, its efficiency is very low. In this study, we dissected the determinants within NS5A responsible for DMV formation and found that RNA-binding domain 1 (D1) and the amino-terminal membrane anchor are indispensable for this process. In contrast, deletion of NS5A D2 or D3 did not affect DMV formation but disrupted RNA replication and virus assembly, respectively. To identifycis- andtrans-acting factors of DMV formation, we established atranscleavage assay. We found that induction of DMVs requires full-length NS3, whereas a helicase-lacking mutant was unable to trigger DMV formation in spite of efficient polyprotein cleavage. Importantly, a mutation accelerating cleavage kinetics at the NS4B-5A site diminished DMV formation, while the insertion of an internal ribosome entry site mimicking constitutive cleavage at this boundary completely abolished this process. These results identify key determinants governing the biogenesis of the HCV RF with possible implications for our understanding of how RFs are formed in other positive-strand RNA viruses.IMPORTANCELike all positive-strand RNA viruses, hepatitis C virus (HCV) extensively reorganizes intracellular membranes to allow efficient RNA replication. Double-membrane vesicles (DMVs) that putatively represent sites of HCV RNA amplification are induced by the concerted action of viral and cellular factors. However, the contribution of individual proteins to this process remains poorly understood. Here we identify determinants in the HCV replicase that are required for DMV biogenesis. Major contributors to this process are domain 1 of nonstructural protein 5A and the helicase domain of nonstructural protein 3. In addition, efficient DMV induction depends onciscleavage of the viral polyprotein, as well as tightly regulated cleavage kinetics. These results identify key determinants governing the biogenesis of the HCV replication factory with possible implications for our understanding of how this central compartment is formed in other positive-strand RNA viruses.

2019 ◽  
Vol 94 (2) ◽  
Author(s):  
Lingbao Kong ◽  
Haruyo Aoyagi ◽  
Zibing Yang ◽  
Tao Ouyang ◽  
Mami Matsuda ◽  
...  

ABSTRACT A number of positive-strand RNA viruses, such as hepatitis C virus (HCV) and poliovirus, use double-membrane vesicles (DMVs) as replication sites. However, the role of cellular proteins in DMV formation during virus replication is poorly understood. HCV NS4B protein induces the formation of a “membranous web” structure that provides a platform for the assembly of viral replication complexes. Our previous screen of NS4B-associated host membrane proteins by dual-affinity purification, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), and small interfering RNA (siRNA) methods revealed that the Surfeit 4 (Surf4) gene, which encodes an integral membrane protein, is involved in the replication of the JFH1 subgenomic replicon. Here, we investigated in detail the effect of Surf4 on HCV replication. Surf4 affects HCV replication in a genotype-independent manner, whereas HCV replication does not alter Surf4 expression. The influence of Surf4 on HCV replication indicates that while Surf4 regulates replication, it has no effect on entry, translation, assembly, or release. Analysis of the underlying mechanism showed that Surf4 is recruited into HCV RNA replication complexes by NS4B and is involved in the formation of DMVs and the structural integrity of RNA replication complexes. Surf4 also participates in the replication of poliovirus, which uses DMVs as replication sites, but it has no effect on the replication of dengue virus, which uses invaginated/sphere-type vesicles as replication sites. These findings clearly show that Surf4 is a novel cofactor that is involved in the replication of positive-strand RNA viruses using DMVs as RNA replication sites, which provides valuable clues for DMV formation during positive-strand RNA virus replication. IMPORTANCE Hepatitis C virus (HCV) NS4B protein induces the formation of a membranous web (MW) structure that provides a platform for the assembly of viral replication complexes. The main constituents of the MW are double-membrane vesicles (DMVs). Here, we found that the cellular protein Surf4, which maintains endoplasmic reticulum (ER)-Golgi intermediate compartments and the Golgi compartment, is recruited into HCV RNA replication complexes by NS4B and is involved in the formation of DMVs. Moreover, Surf4 participates in the replication of poliovirus, which uses DMVs as replication sites, but has no effect on the replication of dengue virus, which uses invaginated vesicles as replication sites. These results indicate that the cellular protein Surf4 is involved in the replication of positive-strand RNA viruses that use DMVs as RNA replication sites, providing new insights into DMV formation during virus replication and potential targets for the diagnosis and treatment of positive-strand RNA viruses.


2000 ◽  
Vol 74 (4) ◽  
pp. 2017-2022 ◽  
Author(s):  
Weidong Zhong ◽  
Annette S. Uss ◽  
Eric Ferrari ◽  
Johnson Y. N. Lau ◽  
Zhi Hong

ABSTRACT RNA-dependent RNA polymerase (RdRp) encoded by positive-strand RNA viruses is critical to the replication of viral RNA genome. Like other positive-strand RNA viruses, replication of hepatitis C virus (HCV) RNA is mediated through a negative-strand intermediate, which is generated through copying the positive-strand genomic RNA. Although it has been demonstrated that HCV NS5B alone can direct RNA replication through a copy-back primer at the 3′ end, de novo initiation of RNA synthesis is likely to be the mode of RNA replication in infected cells. In this study, we demonstrate that a recombinant HCV NS5B protein has the ability to initiate de novo RNA synthesis in vitro. The NS5B used HCV 3′ X-tail RNA (98 nucleotides) as the template to synthesize an RNA product of monomer size, which can be labeled by [γ-32P]nucleoside triphosphate. The de novo initiation activity was further confirmed by using small synthetic RNAs ending with dideoxynucleotides at the 3′ termini. In addition, HCV NS5B preferred GTP as the initiation nucleotide. The optimal conditions for the de novo initiation activity have been determined. Identification and characterization of the de novo priming or initiation activity by HCV NS5B provides an opportunity to screen for inhibitors that specifically target the initiation step.


2017 ◽  
pp. JVI.01890-17 ◽  
Author(s):  
David Paul ◽  
Vanesa Madan ◽  
Omar Ramirez ◽  
Maja Bencun ◽  
Ina Karen Stoeck ◽  
...  

Hepatitis C virus (HCV) RNA replication occurs in tight association with remodeled host cell membranes, presenting as cytoplasmic accumulations of single, double and multi membrane vesicles in infected cells. Formation of these so-called replication organelles is mediated by a complex interplay of host cell factors and viral replicase proteins. Of these, nonstructural protein 4B (NS4B), an integral transmembrane protein, appears to play a key role, but little is known about the molecular mechanisms how this protein contributes to organelle biogenesis. Using forward and reverse genetics we identified glycine-zipper motifs within transmembrane helices 2 and 3 of NS4B that are critically involved in viral RNA replication. Foerster resonance energy transfer analysis revealed the importance of the glycine-zippers in NS4B homo and heterotypic self-interactions. Additionally, ultrastructural analysis using electron microscopy unraveled a prominent role of glycine-zipper residues for the subcellular distribution and the morphology of HCV-induced double membrane vesicles. Notably, loss-of-function NS4B glycine-zipper mutants prominently induced single membrane vesicles with secondary invaginations that might represent an arrested intermediate state in double membrane vesicle formation. These findings highlight a so far unknown role of glycine residues within the membrane integral core domain for NS4B self-interaction and functional as well as structural integrity of HCV replication organelles.IMPORTANCERemodeling of the cellular endomembrane system leading to the establishment of replication organelles is a hallmark of positive-strand RNA viruses. In the case of hepatitis C virus (HCV), expression of the nonstructural proteins induces the accumulation of double membrane vesicles that likely arise from a concerted action of viral and co-opted cellular factors. However, the underlying molecular mechanisms are incompletely understood. Here, we identify glycine-zipper motifs within HCV nonstructural protein 4B (NS4B) transmembrane segments 2 and 3 that are crucial for the protein's self-interaction. Moreover, glycine residues within NS4B transmembrane helices critically contribute to the biogenesis of functional replication organelles and thus, efficient viral RNA replication. These results reveal how glycine-zipper motifs in NS4B contribute to structural and functional integrity of the HCV replication organelles and thus, viral RNA replication.


2015 ◽  
Vol 59 (5) ◽  
pp. 2496-2507 ◽  
Author(s):  
Udayan Chatterji ◽  
Michael Bobardt ◽  
Andrew Tai ◽  
Malcolm Wood ◽  
Philippe A. Gallay

ABSTRACTAlthough the mechanisms of action (MoA) of nonstructural protein 3 inhibitors (NS3i) and NS5B inhibitors (NS5Bi) are well understood, the MoA of cyclophilin inhibitors (CypI) and NS5A inhibitors (NS5Ai) are not fully defined. In this study, we examined whether CypI and NS5Ai interfere with hepatitis C virus (HCV) RNA synthesis of replication complexes (RCs) or with an earlier step of HCV RNA replication, the creation of double-membrane vesicles (DMVs) essential for HCV RNA replication. In contrast to NS5Bi, both CypI and NS5Ai do not block HCV RNA synthesis by way of RCs, suggesting that they exert their antiviral activity prior to the establishment of enzymatically active RCs. We found that viral replication is not a precondition for DMV formation, since the NS3-NS5B polyprotein or NS5A suffices to create DMVs. Importantly, only CypI and NS5Ai, but not NS5Bi, mir-122, or phosphatidylinositol-4 kinase IIIα (PI4KIIIα) inhibitors, prevent NS3-NS5B-mediated DMV formation. NS3-NS5B was unable to create DMVs in cyclophilin A (CypA) knockdown (KD) cells. We also found that the isomerase activity of CypA is absolutely required for DMV formation. This not only suggests that NS5A and CypA act in concert to build membranous viral factories but that CypI and NS5Ai mediate their early anti-HCV effects by preventing the formation of organelles, where HCV replication is normally initiated. This is the first investigation to examine the effect of a large panel of anti-HCV agents on DMV formation, and the results reveal that CypI and NS5Ai act at the same membranous web biogenesis step of HCV RNA replication, thus indicating a new therapeutic target of chronic hepatitis C.


Author(s):  
Ashfaq Ur Rehman ◽  
Guodong Zheng ◽  
Bozitao Zhong ◽  
Duan Ni ◽  
Jia-Yi Li ◽  
...  

Hepatitis C virus (HCV) is a notorious member of the enveloped, positive-strand RNA flavivirus family. Non-structural protein 5A (NS5A) plays a key role in HCV replication and assembly. NS5A is...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Keisuke Tabata ◽  
Vibhu Prasad ◽  
David Paul ◽  
Ji-Young Lee ◽  
Minh-Tu Pham ◽  
...  

AbstractDouble membrane vesicles (DMVs) serve as replication organelles of plus-strand RNA viruses such as hepatitis C virus (HCV) and SARS-CoV-2. Viral DMVs are morphologically analogous to DMVs formed during autophagy, but lipids driving their biogenesis are largely unknown. Here we show that production of the lipid phosphatidic acid (PA) by acylglycerolphosphate acyltransferase (AGPAT) 1 and 2 in the ER is important for DMV biogenesis in viral replication and autophagy. Using DMVs in HCV-replicating cells as model, we found that AGPATs are recruited to and critically contribute to HCV and SARS-CoV-2 replication and proper DMV formation. An intracellular PA sensor accumulated at viral DMV formation sites, consistent with elevated levels of PA in fractions of purified DMVs analyzed by lipidomics. Apart from AGPATs, PA is generated by alternative pathways and their pharmacological inhibition also impaired HCV and SARS-CoV-2 replication as well as formation of autophagosome-like DMVs. These data identify PA as host cell lipid involved in proper replication organelle formation by HCV and SARS-CoV-2, two phylogenetically disparate viruses causing very different diseases, i.e. chronic liver disease and COVID-19, respectively. Host-targeting therapy aiming at PA synthesis pathways might be suitable to attenuate replication of these viruses.


2020 ◽  
Vol 94 (23) ◽  
Author(s):  
Hossam Gewaid ◽  
Haruyo Aoyagi ◽  
Minetaro Arita ◽  
Koichi Watashi ◽  
Ryosuke Suzuki ◽  
...  

ABSTRACT Some plus-stranded RNA viruses generate double-membrane vesicles (DMVs), one type of the membrane replication factories, as replication sites. Little is known about the lipid components involved in the biogenesis of these vesicles. Sphingomyelin (SM) is required for hepatitis C virus (HCV) replication, but the mechanism of SM involvement remains poorly understood. SM biosynthesis starts in the endoplasmic reticulum (ER) and gives rise to ceramide, which is transported from the ER to the Golgi by the action of ceramide transfer protein (CERT), where it can be converted to SM. In this study, inhibition of SM biosynthesis, either by using small-molecule inhibitors or by knockout (KO) of CERT, suppressed HCV replication in a genotype-independent manner. This reduction in HCV replication was rescued by exogenous SM or ectopic expression of the CERT protein, but not by ectopic expression of nonfunctional CERT mutants. Observing low numbers of DMVs in stable replicon cells treated with a SM biosynthesis inhibitor or in CERT-KO cells transfected with either HCV replicon or with constructs that drive HCV protein production in a replication-independent system indicated the significant importance of SM to DMVs. The degradation of SM of the in vitro-isolated DMVs affected their morphology and increased the vulnerability of HCV RNA and proteins to RNase and protease treatment, respectively. Poliovirus, known to induce DMVs, showed decreased replication in CERT-KO cells, while dengue virus, known to induce invaginated vesicles, did not. In conclusion, these findings indicated that SM is an essential constituent of DMVs generated by some plus-stranded RNA viruses. IMPORTANCE Previous reports assumed that sphingomyelin (SM) is essential for HCV replication, but the mechanism was unclear. In this study, we showed for the first time that SM and ceramide transfer protein (CERT), which is in the SM biosynthesis pathway, are essential for the biosynthesis of double-membrane vesicles (DMVs), the sites of viral replication. Low numbers of DMVs were observed in CERT-KO cells transfected with replicon RNA or with constructs that drive HCV protein production in a replication-independent system. HCV replication was rescued by ectopic expression of the CERT protein, but not by CERT mutants, that abolishes the binding of CERT to vesicle-associated membrane protein-associated protein (VAP) or phosphatidylinositol 4-phosphate (PI4P), indicating new roles for VAP and PI4P in HCV replication. The biosynthesis of DMVs has great importance to replication by a variety of plus-stranded RNA viruses. Understanding of this process is expected to facilitate the development of diagnosis and antivirus.


2011 ◽  
Vol 92 (5) ◽  
pp. 1082-1086 ◽  
Author(s):  
Udvitha Nandasoma ◽  
Christopher McCormick ◽  
Stephen Griffin ◽  
Mark Harris

RNA virus genome replication requires initiation at the precise terminus of the template RNA. To investigate the nucleotide requirements for initiation of hepatitis C virus (HCV) positive-strand RNA replication, a hammerhead ribozyme was inserted at the 5′ end of an HCV subgenomic replicon, allowing the generation of replicons with all four possible nucleotides at position 1. This analysis revealed a preference for a purine nucleotide at this position for initiation of RNA replication. The sequence requirements at positions 2–4 in the context of the J6/JFH-1 virus were also examined by selecting replication-competent virus from a pool containing randomized residues at these positions. There was strong selection for both the wild-type cytosine at position 2, and the wild-type sequence at positions 2–4 (CCU). An adenine residue was well tolerated at positions 3 and 4, which suggests that efficient RNA replication is less dependent on these residues.


2019 ◽  
Vol 93 (19) ◽  
Author(s):  
Philipp Schult ◽  
Maren Nattermann ◽  
Chris Lauber ◽  
Stefan Seitz ◽  
Volker Lohmann

ABSTRACT Initiation of RNA synthesis by the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) NS5B has been extensively studied in vitro and in cellulo. Intracellular replication is thought to rely exclusively on terminal de novo initiation, as it conserves all genetic information of the genome. In vitro, however, additional modes of initiation have been observed. In this study, we aimed to clarify whether the intracellular environment allows for internal initiation of RNA replication by the HCV replicase. We used a dual luciferase replicon harboring a terminal and an internal copy of the viral genomic 5′ untranslated region, which was anticipated to support noncanonical initiation. Indeed, a shorter RNA species was detected by Northern blotting with low frequency, depending on the length and sequence composition upstream of the internal initiation site. By introducing mutations at either site, we furthermore established that internal and terminal initiation shared identical sequence requirements. Importantly, lethal point mutations at the terminal site resulted exclusively in truncated replicons. In contrast, the same mutations at the internal site abrogated internal initiation, suggesting a competitive selection of initiation sites, rather than recombination or template-switching events. In conclusion, our data indicate that the HCV replicase is capable of internal initiation in its natural environment, although functional replication likely requires only terminal initiation. Since many other positive-strand RNA viruses generate subgenomic messenger RNAs during their replication cycle, we surmise that their capability for internal initiation is a common and conserved feature of viral RdRps. IMPORTANCE Many aspects of viral RNA replication of hepatitis C virus (HCV) are still poorly understood. The process of RNA synthesis is driven by the RNA-dependent RNA polymerase (RdRp) NS5B. Most mechanistic studies on NS5B so far were performed with in vitro systems using isolated recombinant polymerase. In this study, we present a replicon model, which allows the intracellular assessment of noncanonical modes of initiation by the full HCV replicase. Our results add to the understanding of the biochemical processes underlying initiation of RNA synthesis by NS5B by the discovery of internal initiation in cellulo. Moreover, they validate observations made in vitro, showing that the viral polymerase acts very similarly in isolation and in complex with other viral and host proteins. Finally, these observations provide clues about the evolution of RdRps of positive-strand RNA viruses, which might contain the intrinsic ability to initiate internally.


Sign in / Sign up

Export Citation Format

Share Document