scholarly journals Oligodeoxynucleotide Binding to (CTG) · (CAG) Microsatellite Repeats Inhibits Replication Fork Stalling, Hairpin Formation, and Genome Instability

2012 ◽  
Vol 33 (3) ◽  
pp. 571-581 ◽  
Author(s):  
Guoqi Liu ◽  
Xiaomi Chen ◽  
Michael Leffak

ABSTRACT(CTG)n· (CAG)ntrinucleotide repeat (TNR) expansion in the 3′ untranslated region of the dystrophia myotonica protein kinase (DMPK) gene causes myotonic dystrophy type 1. However, a direct link between TNR instability, the formation of noncanonical (CTG)n· (CAG)nstructures, and replication stress has not been demonstrated. In a human cell model, we found that (CTG)45· (CAG)45causes local replication fork stalling, DNA hairpin formation, and TNR instability. Oligodeoxynucleotides (ODNs) complementary to the (CTG)45· (CAG)45lagging-strand template eliminated DNA hairpin formation on leading- and lagging-strand templates and relieved fork stalling. Prolonged cell culture, emetine inhibition of lagging-strand synthesis, or slowing of DNA synthesis by low-dose aphidicolin induced (CTG)45· (CAG)45expansions and contractions. ODNs targeting the lagging-strand template blocked the time-dependent or emetine-induced instability but did not eliminate aphidicolin-induced instability. These results show directly that TNR replication stalling, replication stress, hairpin formation, and instability are mechanistically linkedin vivo.

2006 ◽  
Vol 25 (11) ◽  
pp. 2596-2604 ◽  
Author(s):  
Christophe Possoz ◽  
Sergio R Filipe ◽  
Ian Grainge ◽  
David J Sherratt

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kai-Hang Lei ◽  
Han-Lin Yang ◽  
Hao-Yen Chang ◽  
Hsin-Yi Yeh ◽  
Dinh Duc Nguyen ◽  
...  

AbstractReplication stress causes replication fork stalling, resulting in an accumulation of single-stranded DNA (ssDNA). Replication protein A (RPA) and CTC1-STN1-TEN1 (CST) complex bind ssDNA and are found at stalled forks, where they regulate RAD51 recruitment and foci formation in vivo. Here, we investigate crosstalk between RPA, CST, and RAD51. We show that CST and RPA localize in close proximity in cells. Although CST stably binds to ssDNA with a high affinity at low ionic strength, the interaction becomes more dynamic and enables facilitated dissociation at high ionic strength. CST can coexist with RPA on the same ssDNA and target RAD51 to RPA-coated ssDNA. Notably, whereas RPA-coated ssDNA inhibits RAD51 activity, RAD51 can assemble a functional filament and exhibit strand-exchange activity on CST-coated ssDNA at high ionic strength. Our findings provide mechanistic insights into how CST targets and tethers RAD51 to RPA-coated ssDNA in response to replication stress.


2009 ◽  
Vol 30 (1) ◽  
pp. 131-145 ◽  
Author(s):  
Marco Bazzi ◽  
Davide Mantiero ◽  
Camilla Trovesi ◽  
Giovanna Lucchini ◽  
Maria Pia Longhese

ABSTRACT Replication fork stalling caused by deoxynucleotide depletion triggers Rad53 phosphorylation and subsequent checkpoint activation, which in turn play a crucial role in maintaining functional DNA replication forks. How cells regulate checkpoint deactivation after inhibition of DNA replication is poorly understood. Here, we show that the budding yeast protein phosphatase Glc7/protein phosphatase 1 (PP1) promotes disappearance of phosphorylated Rad53 and recovery from replication fork stalling caused by the deoxynucleoside triphosphate (dNTP) synthesis inhibitor hydroxyurea (HU). Glc7 is also required for recovery from a double-strand break-induced checkpoint, while it is dispensable for checkpoint inactivation during methylmethane sulfonate exposure, which instead requires the protein phosphatases Pph3, Ptc2, and Ptc3. Furthermore, Glc7 counteracts in vivo histone H2A phosphorylation on serine 129 (γH2A) and dephosphorylates γH2A in vitro. Finally, the replication recovery defects of HU-treated glc7 mutants are partially rescued by Rad53 inactivation or lack of γH2A formation, and the latter also counteracts hyperphosphorylated Rad53 accumulation. We therefore propose that Glc7 activity promotes recovery from replication fork stalling caused by dNTP depletion and that γH2A dephosphorylation is a critical Glc7 function in this process.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Léa Marie ◽  
Lorraine S. Symington

AbstractReplication stress and abundant repetitive sequences have emerged as primary conditions underlying genomic instability in eukaryotes. To gain insight into the mechanism of recombination between repeated sequences in the context of replication stress, we used a prokaryotic Tus/Ter barrier designed to induce transient replication fork stalling near inverted repeats in the budding yeast genome. Our study reveals that the replication fork block stimulates a unique recombination pathway dependent on Rad51 strand invasion and Rad52-Rad59 strand annealing activities, Mph1/Rad5 fork remodelers, Mre11/Exo1/Dna2 resection machineries, Rad1-Rad10 nuclease and DNA polymerase δ. Furthermore, we show recombination at stalled replication forks is limited by the Srs2 helicase and Mus81-Mms4/Yen1 nucleases. Physical analysis of the replication-associated recombinants revealed that half are associated with an inversion of sequence between the repeats. Based on our extensive genetic characterization, we propose a model for recombination of closely linked repeats that can robustly generate chromosome rearrangements.


2010 ◽  
Vol 191 (5) ◽  
pp. 953-966 ◽  
Author(s):  
Tovah A. Day ◽  
Komariah Palle ◽  
Laura R. Barkley ◽  
Naoko Kakusho ◽  
Ying Zou ◽  
...  

The E3 ubiquitin ligase Rad18 guides DNA Polymerase eta (Polη) to sites of replication fork stalling and mono-ubiquitinates proliferating cell nuclear antigen (PCNA) to facilitate binding of Y family trans-lesion synthesis (TLS) DNA polymerases during TLS. However, it is unclear exactly how Rad18 is regulated in response to DNA damage and how Rad18 activity is coordinated with progression through different phases of the cell cycle. Here we identify Rad18 as a novel substrate of the essential protein kinase Cdc7 (also termed Dbf4/Drf1-dependent Cdc7 kinase [DDK]). A serine cluster in the Polη-binding motif of Rad18 is phosphorylated by DDK. Efficient association of Rad18 with Polη is dependent on DDK and is necessary for redistribution of Polη to sites of replication fork stalling. This is the first demonstration of Rad18 regulation by direct phosphorylation and provides a novel mechanism for integration of S phase progression with postreplication DNA repair to maintain genome stability.


2000 ◽  
Vol 20 (1) ◽  
pp. 173-180 ◽  
Author(s):  
Michael L. Rolfsmeier ◽  
Robert S. Lahue

ABSTRACT In most trinucleotide repeat (TNR) diseases, the primary factor determining the likelihood of expansions is the length of the TNR. In some diseases, however, stable alleles contain one to three base pair substitutions that interrupt the TNR tract. The unexpected stability of these alleles compared to the frequent expansions of perfect TNRs suggested that interruptions somehow block expansions and that expansions occur only upon loss of at least one interruption. The work in this study uses a yeast genetic assay to examine the mechanism of stabilization conferred by two interruptions of a 25-repeat tract. Expansion rates are reduced up to 90-fold compared to an uninterrupted allele. Stabilization is greatest when the interruption is replicated early on the lagging strand, relative to the rest of the TNR. Although expansions are infrequent, they are often polar, gaining new DNA within the largest available stretch of perfect repeats. Surprisingly, interruptions are always retained and sometimes even duplicated, suggesting that expansion in yeast cells can proceed without loss of the interruption. These findings support a stabilization model in which interruptions contribute in cis to reduce hairpin formation during TNR replication and thus inhibit expansion rates.


2019 ◽  
Author(s):  
Yuki Kataoka ◽  
Makoto Iimori ◽  
Ryo Fujisawa ◽  
Tomomi Morikawa-Ichinose ◽  
Shinichiro Niimi ◽  
...  

ABSTRACTDNA replication stress is a predominant cause of genome instability, a driver of tumorigenesis and malignant progression. Nucleoside analog-type chemotherapeutic drugs introduce DNA damage and exacerbate DNA replication stress in tumor cells. However, the mechanisms underlying tumor cytotoxicity triggered by the drugs are not fully understood. Here, we show that the fluorinated thymidine analog trifluridine (FTD), an active component of the chemotherapeutic drug trifluridine/tipiracil, delayed DNA synthesis by human replicative DNA polymerases. FTD acted as an inefficient deoxyribonucleotide triphosphate source (FTD triphosphate) and as an obstacle base (trifluorothymine) in the template DNA strand. At the cellular level, FTD decreased thymidine triphosphate in the dNTP pool and induced FTD triphosphate accumulation, resulting in replication fork stalling caused by FTD incorporation into DNA. DNA lesions involving single-stranded DNA were generated as a result of replication fork stalling, and the p53-p21 pathway was activated. Although FTD suppressed tumor cell growth irrespective of p53 status, tumor cell fate diverged at the G2/M phase transition according to p53 status; tumor cells with wild-type p53 underwent cellular senescence via mitosis skip, whereas tumor cells that lost wild-type p53 underwent apoptotic cell death via aberrant late mitosis with severely impaired separation of sister chromatids. These results suggest that DNA replication stress induced by a nucleoside analog-type chemotherapeutic drug triggers tumor cytotoxicity by determining tumor cell fate according to p53 status.SignificanceThis study identified a unique type of DNA replication stress induced by trifluridine, which directs tumor cell fate either toward cellular senescence or apoptotic cell death according to p53 status.


2018 ◽  
Author(s):  
Yang Liu ◽  
Miaomiao Zhang ◽  
Bing Wang ◽  
Yingnan Xiao ◽  
Tingfang Li ◽  
...  

AbstractHuman CST (CTC1-STN1-TEN1) is an RPA-like complex that associates with G-rich single-strand DNA and helps resolve replication problems both at telomeres and genome-wide. We previously showed that CST binds and disrupts G-quadruplex (G4) DNA in vitro, suggesting that CST may prevent in vivo blocks to replication by resolving G4 structures. Here, we demonstrate that CST binds and unfolds G4 with similar efficiency to RPA. In cells, CST is recruited to telomeric and non-telomeric chromatin upon G4 stabilization. STN1 depletion increases G4 accumulation and slows bulk genomic DNA replication. At telomeres, combined STN1 depletion and G4 stabilization causes multi-telomere FISH signals and telomere loss, hallmarks of deficient telomere duplex replication. Strand-specific telomere FISH indicates preferential loss of C-strand DNA while analysis of BrdU uptake during leading and lagging-strand telomere replication shows preferential under-replication of lagging telomeres. Together these results indicate a block to Okazaki fragment synthesis. Overall, our findings indicate a novel role for CST in maintaining genome integrity through resolution of G4 structures both ahead of the replication fork and on the lagging strand template.


2020 ◽  
Author(s):  
Karel Naiman ◽  
Eduard Campillo-Funollet ◽  
Adam T. Watson ◽  
Alice Budden ◽  
Izumi Miyabe ◽  
...  

AbstractDNA replication fidelity is essential for maintaining genetic stability. Forks arrested at replication fork barriers can be stabilised by the intra-S phase checkpoint, subsequently being rescued by a converging fork, or resuming when the barrier is removed. However, some arrested forks cannot be stabilised and fork convergence cannot rescue in all situations. Thus, cells have developed homologous recombination-dependent mechanisms to restart persistently inactive forks. To understand HR-restart we use polymerase usage sequencing to visualize in vivo replication dynamics at an S. pombe replication barrier, RTS1, and model replication by Monte Carlo simulation. We show that HR-restarted forks synthesise both strands with Pol δ for up to 30 kb without maturing to a δ/ε configuration and that Pol α is not used significantly on either strand, suggesting the lagging strand template remains as a gap that is filled in by Pol δ later. We further demonstrate that HR-restarted forks progress uninterrupted through a fork barrier that arrests canonical forks. Finally, by manipulating lagging strand resection during HR-restart by deleting pku70, we show that the leading strand initiates replication at the same position, signifying the stability of the 3’ single strand in the context of increased resection.


Sign in / Sign up

Export Citation Format

Share Document