Connections between the Ras-cyclic AMP pathway and G1 cyclin expression in the budding yeast Saccharomyces cerevisiae

1993 ◽  
Vol 13 (10) ◽  
pp. 6274-6282
Author(s):  
L Hubler ◽  
J Bradshaw-Rouse ◽  
W Heideman

We have identified two processes in the G1 phase of the Saccharomyces cerevisiae cell cycle that are required before nutritionally arrested cells are able to return to proliferative growth. The first process requires protein synthesis and is associated with increased expression of the G1 cyclin gene CLN3. This process requires nutrients but is independent of Ras and cyclic AMP (cAMP). The second process requires cAMP. This second process is rapid, is independent of protein synthesis, and produces a rapid induction of START-specific transcripts, including CLN1 and CLN2. The ability of a nutritionally arrested cell to respond to cAMP is dependent on completion of the first process, and this is delayed in cells carrying a CLN3 deletion. Mating pheromone blocks the cAMP response but does not alter the process upstream of Ras-cAMP. These results suggest a model linking the Ras-cAMP pathway with regulation of G1 cyclin expression.

1993 ◽  
Vol 13 (10) ◽  
pp. 6274-6282 ◽  
Author(s):  
L Hubler ◽  
J Bradshaw-Rouse ◽  
W Heideman

We have identified two processes in the G1 phase of the Saccharomyces cerevisiae cell cycle that are required before nutritionally arrested cells are able to return to proliferative growth. The first process requires protein synthesis and is associated with increased expression of the G1 cyclin gene CLN3. This process requires nutrients but is independent of Ras and cyclic AMP (cAMP). The second process requires cAMP. This second process is rapid, is independent of protein synthesis, and produces a rapid induction of START-specific transcripts, including CLN1 and CLN2. The ability of a nutritionally arrested cell to respond to cAMP is dependent on completion of the first process, and this is delayed in cells carrying a CLN3 deletion. Mating pheromone blocks the cAMP response but does not alter the process upstream of Ras-cAMP. These results suggest a model linking the Ras-cAMP pathway with regulation of G1 cyclin expression.


1987 ◽  
Vol 7 (1) ◽  
pp. 244-250
Author(s):  
D Y Shin ◽  
K Matsumoto ◽  
H Iida ◽  
I Uno ◽  
T Ishikawa

When Saccharomyces cerevisiae cells grown at 23 degrees C were transferred to 36 degrees C, they initiated synthesis of heat shock proteins, acquired thermotolerance to a lethal heat treatment given after the temperature shift, and arrested their growth transiently at the G1 phase of the cell division cycle. The bcy1 mutant which resulted in production of cyclic AMP (cAMP)-independent protein kinase did not synthesize the three heat shock proteins hsp72A, hsp72B, and hsp41 after the temperature shift. The bcy1 cells failed to acquire thermotolerance to the lethal heat treatment and were not arrested at the G1 phase after the temperature shift. In contrast, the cyr1-2 mutant, which produced a low level of cAMP, constitutively produced three heat shock proteins and four other proteins without the temperature shift and was resistant to the lethal heat treatment. The results suggest that a decrease in the level of cAMP-dependent protein phosphorylation results in the heat shock response, including elevated synthesis of three heat shock proteins, acquisition of thermotolerance, and transient arrest of the cell cycle.


1987 ◽  
Vol 7 (4) ◽  
pp. 1371-1377 ◽  
Author(s):  
T Toda ◽  
S Cameron ◽  
P Sass ◽  
M Zoller ◽  
J D Scott ◽  
...  

We have cloned a gene (BCY1) from the yeast Saccharomyces cerevisiae that encodes a regulatory subunit of the cyclic AMP-dependent protein kinase. The encoded protein has a structural organization similar to that of the RI and RII regulatory subunits of the mammalian cyclic AMP-dependent protein kinase. Strains of S. cerevisiae with disrupted BCY1 genes do not display a cyclic AMP-dependent protein kinase in vitro, fail to grow on many carbon sources, and are exquisitely sensitive to heat shock and starvation.


1990 ◽  
Vol 10 (5) ◽  
pp. 2104-2110
Author(s):  
A P Mitchell ◽  
S E Driscoll ◽  
H E Smith

In the yeast Saccharomyces cerevisiae, meiosis and spore formation require the induction of sporulation-specific genes. Two genes are thought to activate the sporulation program: IME1 and IME2 (inducer of meiosis). Both genes are induced upon entry into meiosis, and IME1 is required for IME2 expression. We report here that IME1 is essential for expression of four sporulation-specific genes. In contrast, IME2 is not absolutely essential for expression of the sporulation-specific genes, but contributes to their rapid induction. Expression of IME2 from a heterologous promoter permits the expression of these sporulation-specific genes, meiotic recombination, and spore formation in the absence of IME1. We propose that the IME1 and IME2 products can each activate sporulation-specific genes independently. In addition, the IME1 product stimulates sporulation-specific gene expression indirectly through activation of IME2 expression.


1987 ◽  
Vol 7 (3) ◽  
pp. 998-1003
Author(s):  
M Altmann ◽  
C Handschin ◽  
H Trachsel

We have isolated genomic and cDNA clones encoding protein synthesis initiation factor eIF-4E (mRNA cap-binding protein) of the yeast Saccharomyces cerevisiae. Their identity was established by expression of a cDNA in Escherichia coli. This cDNA encodes a protein indistinguishable from purified eIF-4E in terms of molecular weight, binding to and elution from m7GDP-agarose affinity columns, and proteolytic peptide pattern. The eIF-4E gene was isolated by hybridization of cDNA to clones of a yeast genomic library. The gene lacks introns, is present in one copy per haploid genome, and encodes a protein of 213 amino acid residues. Gene disruption experiments showed that the gene is essential for growth.


Sign in / Sign up

Export Citation Format

Share Document