scholarly journals The product of the cbl oncogene forms stable complexes in vivo with endogenous Crk in a tyrosine phosphorylation-dependent manner.

1996 ◽  
Vol 16 (1) ◽  
pp. 45-52 ◽  
Author(s):  
V Ribon ◽  
S Hubbell ◽  
R Herrera ◽  
A R Saltiel

The cellular homologs of the v-Crk oncogene product are composed exclusively of Src homology region 2 (SH2) and SH3 domains. v-Crk overexpression in fibroblasts causes cell transformation and elevated tyrosine phosphorylation of specific cellular proteins. Among these proteins is a 130-kDa protein, identified as p130cas, that forms a stable complex in vivo with v-Crk. We have explored the role of endogenous Crk proteins in Bcr-Abl-transformed cells. In the K562 human chronic myelogenous leukemia cell line, p130cas is not tyrosine phosphorylated or bound to Crk. Instead, Crk proteins predominantly associate with the tyrosine-phosphorylated proto-oncogene product of Cbl. In vitro analysis showed that this interaction is mediated by the SH2 domain of Crk and can be inhibited with a phosphopeptide containing the Crk-SH2 binding motif. In NIH 3T3 cells transformed by Bcr-Abl, c-Cbl becomes strongly tyrosine phosphorylated and associates with c-Crk. The complex between c-Crk and c-Cbl is also seen upon T-cell receptor cross-linking or with the transforming, tyrosine-phosphorylated c-Cbl. These results indicate that Crk binds to c-Cbl in a tyrosine phosphorylation-dependent manner, suggesting a physiological role for the Crk-c-Cbl complex in Bcr-Abl tyrosine phosphorylation-mediated transformation.

Bionatura ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 1725-1732
Author(s):  
Hamdah Alsaeedi ◽  
Rowaid Qahwaji ◽  
Talal Qadah

Kola nut extracts have recently been reported to contain chemopreventive compounds providing several pharmacological benefits. This study investigated Kola nut extracts' anti-cancer activity on human immortalized myelogenous leukemia cell line K562 through apoptosis and cell cycle arrest. Fresh Kola nuts were prepared as powder and dissolved in DMSO. Different concentrations (50, 100, 150, 200, and 250 μg/ml) of working solutions were prepared. The K562 cells were treated with the different concentrations of Kola nut extract or vehicle control (10% DMSO) followed by incubation at 37°C for 24, 48, and 72 hours, respectively. Treatment activity was investigated in K562 cells; by Resazurin, and FITC/Propidium Iodide and 7-AAD stained cells to evaluate apoptotic cells and the cell cycle's progression. Inhibition of leukemia cell proliferation was observed. The extract effectively induced cell death, early and late apoptosis by approximately 30% after 24 and 48 hours incubation, and an increase in the rate of dead cells by 50% was observed after 72 hours of incubation. Also, cell growth reduction was seen at high dose concentrations (150 and 200 µg/ml), as evident by cell count once treated with Kola nut extract. The total number of apoptotic cells increased from 5.8% of the control group to 27.4% at 250 µg/ml concentration. Moreover, Kola nut extracts' effects on K562 cells increased gradually in a dose and time-dependent manner. It was observed that Kola nut extracts could arrest the cell cycle in the G2/M phase as an increase in the number of cells by 29.8% and 14.6 % were observed from 9.8% and 5.2% after 24 and 48 hours of incubation, respectively. This increase was detected in a dose and time-dependent manner. Kola nut extracts can be used as a novel anti-cancer agent in Leukemia treatment as it has shown significant therapeutic potential and therefore provides new insights in understanding the mechanisms of its action. Keywords: Kola nut extracts, Leukemia, K562 cell line, Apoptosis, Cancer.


1989 ◽  
Vol 17 (01n02) ◽  
pp. 45-50 ◽  
Author(s):  
Yasuo Tanno ◽  
Yuriko Shindoh ◽  
Tamotsu Takishima

Our previous study showed the inhibitory effect of Qing-Fei-Tang (Q.T.F.) and baicalein on the leukotriene (LT)B4 synthesis of human alveolar macrophages. It has recently been demonstrated that LTs support various cell growth, and basophil and its precursor numbers increase in atopic patients. Therefore, we examined the effect of anti-allergic drugs, including Q.F.T., Xiao-Qing-Long-Tang (X.Q.L.T.), Chai-Pu-Tang (C.P.T.), baicalein and ketotifen which have been used for treatment of bronchial asthma, on human basophil growth in vitro using cord blood mononuclear cells as a basophil precursor source and conditioned medium of T cell leukemia cell line Mo as a growth factor. Two-week cultured basophil numbers identified by alcian blue-safranin staining and those histamine contents assayed fluorometrically were inhibited by Q.F.T. (1.0 mg/ml), X.Q.L.T. (0.01–1.0 mg/ml), C.P.T. (0.01–1.0 mg/ml), baicalein (1–100 μM) or ketotifen (1–100 μM) in a dose-dependent manner while low dose (0.01–0.1 mg/ml) of Q.F.T. showed an enhancing effect on the basophil growth and the histamine content. However, LTB4 or LTC4 failed in restoring the basophil growth reduced by 1 mg/ml of C.P.T. or 100 μM of ketotifen. These results suggest that anti-allergic drugs may modulate basophil growth and differentiation in vitro and/or in vivo and therefore by useful and reasonable for controlling allergic diseases including bronchial asthma.


Blood ◽  
1991 ◽  
Vol 78 (11) ◽  
pp. 2834-2840 ◽  
Author(s):  
A Kuriu ◽  
H Ikeda ◽  
Y Kanakura ◽  
JD Griffin ◽  
B Druker ◽  
...  

Abstract We investigated the expression, degree of phosphorylation, and activation of the proto-oncogene c-kit product before and after stimulation with the c-kit ligand in a human factor-dependent myeloid leukemia cell line, MO7E. The culture supernatant of the BALB/3T3 fibroblast cell line, which contains the ligand for the murine c-kit product, was found to stimulate proliferation of the MO7E cell line in a dose-dependent manner. The proliferation was significantly inhibited by a tyrosine kinase inhibitor, genistein. An immunoblot technique with a monoclonal antibody specific for phosphotyrosine, showed that there was rapid, dose-dependent tyrosine-phosphorylation of the c-kit product in response to murine c-kit ligand. Furthermore, the murine c-kit ligand increased autokinase activity of the c-kit product in vitro. Similar results were obtained with human stem cell factor (SCF), a recombinant human ligand for the c-kit product. These results suggest that the phosphorylation and activation of the c-kit product are involved in proliferative signals of some human leukemia cells, as well as of normal hematopoietic cells.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Burcu Saygıdeğer Demir ◽  
Tuğba Keleş ◽  
Osman Serindağ

Phosphine metal complexes have been recently evaluated in the field of cancer therapy. In this research, the cytotoxic effects of some metal phosphines{[PdCl2((CH2OH)2PCH2)2NCH3] (C1), [RuCl2(((CH2OH)2PCH2)2NCH3)2] (C2), [PtCl2((Ph2PCH2)2NCH3)(timin)2] (C3)}on K562 (human myelogenous leukemia cell line) and A549 (adenocarcinomic human alveolar basal epithelial cells) cells were investigated using the MTT test. C1 and C2 are water-soluble metal complexes, which may have some advantages inin vitroandin vivostudies. The effects of the above-mentioned metal complexes on thioredoxin reductase (TrxR) (EC: 1.8.1.9), glutathione peroxidase (GPx) (EC: 1.11.1.9), and catalase (Cat) (EC: 1.11.1.6) enzymes were also tested. The results of this research showed that all three metal complexes indicated dose-dependent cytotoxicity on A549 and K562 cell lines and that the complexes inhibited different percentages of the TrxR, GPx, and Cat enzymes of these tumor cells.


Blood ◽  
1992 ◽  
Vol 80 (6) ◽  
pp. 1546-1552
Author(s):  
M Amar ◽  
N Amit ◽  
JY Scoazec ◽  
C Pasquier ◽  
C Babin-Chevaye ◽  
...  

Abstract We have previously reported that K562, a chronic myelogenous leukemia cell line, releases a low molecular weight factor (6 to 8 Kd) that inhibits human polymorphonuclear neutrophil (PMN) adherence and adherence-related functions tested in vitro. We now report that this factor, which we have named K562 inhibitory factor (K562-IF), has potent anti-inflammatory activity in mice, associated with an inhibition of PMN functions. Its in vitro actions were less marked with mouse PMN than with human PMN. They included (1) an inhibition of both nonstimulated locomotion and locomotion induced by FMLP or serum; (2) an inhibition of the chemiluminescence induced by opsonized zymosan, but not that induced by phorbol myristate acetate or FMLP; (3) an inhibition of the degranulation stimulated by opsonized zymosan, as reflected by lactoferrin and lysozyme release; and (4) a decrease in arachidonic acid release and leukotriene B4 production by A23187- stimulated PMN. The in vivo actions of K562-IF after intraperitoneal injection included (1) an inhibition of subcutaneous PMN accumulation at the site of injection of opsonized zymosan (PMN accumulated neither outside the vessels nor intravascularly, as shown by means of histochemistry); (2) an inhibition of neutrophil accumulation in the peritoneum of mice having received sodium caseinate or opsonized zymosan intraperitoneally; and (3) lysozyme concentration in neutrophils having reached the peritoneum after opsonized zymosan treatment equal to that in blood, suggesting diminished release. PMN influx and degranulation in the peritoneum were reduced by 50% after 3 hours of treatment with 1 microgram of K562-IF (equivalent to the effect of 120 micrograms of prednisolone). Taken together, these results show that K562-IF is a potent anti-inflammatory agent that acts by inhibiting PMN functions.


Blood ◽  
1992 ◽  
Vol 80 (6) ◽  
pp. 1546-1552
Author(s):  
M Amar ◽  
N Amit ◽  
JY Scoazec ◽  
C Pasquier ◽  
C Babin-Chevaye ◽  
...  

We have previously reported that K562, a chronic myelogenous leukemia cell line, releases a low molecular weight factor (6 to 8 Kd) that inhibits human polymorphonuclear neutrophil (PMN) adherence and adherence-related functions tested in vitro. We now report that this factor, which we have named K562 inhibitory factor (K562-IF), has potent anti-inflammatory activity in mice, associated with an inhibition of PMN functions. Its in vitro actions were less marked with mouse PMN than with human PMN. They included (1) an inhibition of both nonstimulated locomotion and locomotion induced by FMLP or serum; (2) an inhibition of the chemiluminescence induced by opsonized zymosan, but not that induced by phorbol myristate acetate or FMLP; (3) an inhibition of the degranulation stimulated by opsonized zymosan, as reflected by lactoferrin and lysozyme release; and (4) a decrease in arachidonic acid release and leukotriene B4 production by A23187- stimulated PMN. The in vivo actions of K562-IF after intraperitoneal injection included (1) an inhibition of subcutaneous PMN accumulation at the site of injection of opsonized zymosan (PMN accumulated neither outside the vessels nor intravascularly, as shown by means of histochemistry); (2) an inhibition of neutrophil accumulation in the peritoneum of mice having received sodium caseinate or opsonized zymosan intraperitoneally; and (3) lysozyme concentration in neutrophils having reached the peritoneum after opsonized zymosan treatment equal to that in blood, suggesting diminished release. PMN influx and degranulation in the peritoneum were reduced by 50% after 3 hours of treatment with 1 microgram of K562-IF (equivalent to the effect of 120 micrograms of prednisolone). Taken together, these results show that K562-IF is a potent anti-inflammatory agent that acts by inhibiting PMN functions.


Blood ◽  
1991 ◽  
Vol 78 (11) ◽  
pp. 2834-2840 ◽  
Author(s):  
A Kuriu ◽  
H Ikeda ◽  
Y Kanakura ◽  
JD Griffin ◽  
B Druker ◽  
...  

We investigated the expression, degree of phosphorylation, and activation of the proto-oncogene c-kit product before and after stimulation with the c-kit ligand in a human factor-dependent myeloid leukemia cell line, MO7E. The culture supernatant of the BALB/3T3 fibroblast cell line, which contains the ligand for the murine c-kit product, was found to stimulate proliferation of the MO7E cell line in a dose-dependent manner. The proliferation was significantly inhibited by a tyrosine kinase inhibitor, genistein. An immunoblot technique with a monoclonal antibody specific for phosphotyrosine, showed that there was rapid, dose-dependent tyrosine-phosphorylation of the c-kit product in response to murine c-kit ligand. Furthermore, the murine c-kit ligand increased autokinase activity of the c-kit product in vitro. Similar results were obtained with human stem cell factor (SCF), a recombinant human ligand for the c-kit product. These results suggest that the phosphorylation and activation of the c-kit product are involved in proliferative signals of some human leukemia cells, as well as of normal hematopoietic cells.


1998 ◽  
Vol 334 (3) ◽  
pp. 595-600 ◽  
Author(s):  
Andrey SOROKIN ◽  
Eleanor REED

The docking protein p130cas (Crk-associated substrate) forms a stable complex with the adaptor protein CrkII in a tyrosine-phosphorylation-dependent manner. Insulin-induced tyrosine phosphorylation of insulin receptor substrates results in the redistribution of CrkII between p130cas and insulin receptor substrate-1. A decrease in the association between CrkII and p130cas in response to insulin stimulation was detected in CHO cells stably expressing insulin receptor or insulin receptor substrate-1, and in L6 rat myoblasts. Along with the decrease in the association of CrkII with p130cas, the amount of tyrosine-phosphorylated insulin receptor substrate-1 co-precipitated with CrkII increased in all cell types studied. The insulin-induced decrease in the CrkII–p130cas association was further confirmed by Far Western Blot analysis with the Src homology 2 (SH2) domain of CrkII. Insulin regulates the association of CrkII with p130cas by tyrosine dephosphorylation of p130cas and co-ordinated tyrosine phosphorylation of insulin receptor substrate-1. Tyrosine-phosphorylated insulin receptor substrate-1 serves as a docking protein for multiple adaptor proteins and competes with p130cas for CrkII.


1980 ◽  
Vol 4 (2) ◽  
pp. 203-208 ◽  
Author(s):  
Eero Niskanen ◽  
H.Phillip Koeffler ◽  
David W. Golde ◽  
Martin J. Cline

Sign in / Sign up

Export Citation Format

Share Document