scholarly journals Mad proteins contain a dominant transcription repression domain.

1996 ◽  
Vol 16 (10) ◽  
pp. 5772-5781 ◽  
Author(s):  
D E Ayer ◽  
C D Laherty ◽  
Q A Lawrence ◽  
A P Armstrong ◽  
R N Eisenman

Transcription repression by the basic region-helix-loop-helix-zipper (bHLHZip) protein Mad1 requires DNA binding as a ternary complex with Max and mSin3A or mSin3B, the mammalian orthologs of the Saccharomyces cerevisiae transcriptional corepressor SIN3. The interaction between Mad1 and mSin3 is mediated by three potential amphipathic alpha-helices: one in the N terminus of Mad (mSin interaction domain, or SID) and two within the second paired amphipathic helix domain (PAH2) of mSin3A. Mutations that alter the structure of the SID inhibit in vitro interaction between Mad and mSin3 and inactivate Mad's transcriptional repression activity. Here we show that a 35-residue region containing the SID represents a dominant repression domain whose activity can be transferred to a heterologous DNA binding region. A fusion protein comprising the Mad1 SID linked to a Ga14 DNA binding domain mediates repression of minimal as well as complex promoters dependent on Ga14 DNA binding sites. In addition, the SID represses the transcriptional activity of linked VP16 and c-Myc transactivation domains. When fused to a full-length c-Myc protein, the Mad1 SID specifically represses both c-Myc's transcriptional and transforming activities. Fusions between the GAL DNA binding domain and full-length mSin3 were also capable of repression. We show that the association between Mad1 and mSin3 is not only dependent on the helical SID but is also dependent on both putative helices of the mSin3 PAH2 region, suggesting that stable interaction requires all three helices. Our results indicate that the SID is necessary and sufficient for transcriptional repression mediated by the Mad protein family and that SID repression is dominant over several distinct transcriptional activators.

1995 ◽  
Vol 15 (2) ◽  
pp. 861-871 ◽  
Author(s):  
K M Catron ◽  
H Zhang ◽  
S C Marshall ◽  
J A Inostroza ◽  
J M Wilson ◽  
...  

This study investigates the transcriptional properties of Msx-1, a murine homeodomain protein which has been proposed to play a key role in regulating the differentiation and/or proliferation state of specific cell populations during embryogenesis. We show, using basal and activated transcription templates, that Msx-1 is a potent repressor of transcription and can function through both TATA-containing and TATA-less promoters. Moreover, repression in vivo and in vitro occurs in the absence of DNA-binding sites for the Msx-1 homeodomain. Utilizing a series of truncated Msx-1 polypeptides, we show that multiple regions of Msx-1 contribute to repression, and these are rich in alanine, glycine, and proline residues. When fused to a heterologous DNA-binding domain, both N- and C-terminal regions of Msx-1 retain repressor function, which is dependent upon the presence of the heterologous DNA-binding site. Moreover, a polypeptide consisting of the full-length Msx-1 fused to a heterologous DNA-binding domain is a more potent repressor than either the N- or C-terminal regions alone, and this fusion retains the ability to repress transcription in the absence of the heterologous DNA site. We further show that Msx-1 represses transcription in vitro in a purified reconstituted assay system and interacts with protein complexes composed of TBP and TFIIA (DA) and TBP, TFIIA, and TFIIB (DAB) in gel retardation assays, suggesting that the mechanism of repression is mediated through interaction(s) with a component(s) of the core transcription complex. We speculate that the repressor function of Msx-1 is critical for its proposed role in embryogenesis as a regulator of cellular differentiation.


2004 ◽  
Vol 32 (1) ◽  
pp. 69-86 ◽  
Author(s):  
S Kobayashi ◽  
H Shibata ◽  
I Kurihara ◽  
K Yokota ◽  
N Suda ◽  
...  

Chicken ovalbumin upstream promoter-transcription factors (COUP-TFs) are orphan receptors involved in regulation of neurogenesis and organogenesis. COUP-TF family members are generally considered to be transcriptional repressors and several mechanisms have been proposed to underlie this activity. To explore novel transcriptional coregulators for COUP-TFs, we used the COUP-TFI as bait in a yeast two-hybrid screen of an adrenocortical adenoma cDNA library. We have identified Ubc9, a class E2 conjugating enzyme of small ubiquitin-related modifier (SUMO)-1 as a COUP-TFI corepressor. Ubc9 interacts with COUP-TFI in yeast and in glutathione S-transferase pulldown and coimmunoprecipitation assays. Fluorescence imaging studies show that both Ubc9 and COUP-TFI are colocalized in the nuclei of transfected COS-1 cells. The C-terminal region of Ubc9 encoding amino acids 59-158 interacts with the C-terminus of COUP-TFI encoding amino acids 383-403, in which transcriptional repression domains are located. Mammalian one-hybrid assays utilizing a variety of Ubc9 fragments fused to Gal4 DNA-binding domain show that a Ubc9 fragment encoding amino acids 1-89 contains autonomous transferrable repression domain. Transfection of Ubc9 into COS-1 cells markedly enhances transcriptional repression by Gal4 DNA-binding domain-fused to COUP-TFI(155-423), but not by Gal4-COUP-TFI(155-388) which lacks a repressor domain. Coexpression of a C-terminal deletion mutant of Ubc9(1-58), which fails to interact with COUP-TFI, but retains a transcriptional repression domain, has no effect on Gal4-COUP-TFI-mediated repression activity. These findings indicate that interaction of Ubc9 with COUP-TFI is crucial for the corepressor function of Ubc9. Overexpression of Ubc9 similarly enhances COUP-TFI-dependent repression of the promoter activity of the bovine CYP17 gene encoding steroid 17alpha-hydroxylase. In addition, the C93S mutant of Ubc9, which abrogates SUMO-1 conjugation activity, continues to function as a COUP-TFI corepressor. Our studies indicate that Ubc9 functions as a novel COUP-TFI corepressor, the function of which is distinct from its SUMO-1 conjugating enzyme activity.


1996 ◽  
Vol 16 (6) ◽  
pp. 2670-2677 ◽  
Author(s):  
A L Fisher ◽  
S Ohsako ◽  
M Caudy

Hairy-related proteins include the Drosophila Hairy and Enhancer of Split proteins and mammalian Hes proteins. These proteins are basic helix-loop-helix (bHLH) transcriptional repressors that control cell fate decisions such as neurogenesis or myogenesis in both Drosophila melanogaster and mammals. Hairy-related proteins are site-specific DNA-binding proteins defined by the presence of both a repressor-specific bHLH DNA binding domain and a carboxyl-terminal WRPW (Trp-Arg-Pro-Trp) motif. These proteins act as repressors by binding to DNA sites in target gene promoters and not by interfering with activator proteins, indicating that these proteins are active repressors which should therefore have specific repression domains. Here we show the WRPW motif to be a functional transcriptional repression domain sufficient to confer active repression to Hairy-related proteins or a heterologous DNA-binding protein, Ga14. This motif was previously shown to be necessary for interactions with Groucho, a genetically defined corepressor for Drosophila Hairy-related proteins. Here we show that the WRPW motif is sufficient to recruit Groucho or the TLE mammalian homologs to target gene promoters. We also show that Groucho and TLE proteins actively repress transcription when directly bound to a target gene promoter and identify a novel, highly conserved transcriptional repression domain in these proteins. These results directly demonstrate that Groucho family proteins are active transcriptional corepressors for Hairy-related proteins and are recruited by the 4-amino acid protein-protein interaction domain, WRPW.


1994 ◽  
Vol 14 (9) ◽  
pp. 6056-6067
Author(s):  
M Tanaka ◽  
W Herr

The POU domain activator Oct-2 contains an N-terminal glutamine-rich transcriptional activation domain. An 18-amino-acid segment (Q18III) from this region reconstituted a fully functional activation domain when tandemly reiterated and fused to either the Oct-2 or GAL4 DNA-binding domain. A minimal transcriptional activation domain likely requires three tandem Q18III segments, because one or two tandem Q18III segments displayed little activity, whereas three to five tandem segments were active and displayed increasing activity with increasing copy number. As with natural Oct-2 activation domains, in our assay a reiterated activation domain required a second homologous or heterologous activation domain to stimulate transcription effectively when fused to the Oct-2 POU domain. These results suggest that there are different levels of synergy within and among activation domains. Analysis of reiterated activation domains containing mutated Q18III segments revealed that leucines and glutamines, but not serines or threonines, are critical for activity in vivo. Curiously, several reiterated activation domains that were inactive in vivo were active in vitro, suggesting that there are significant functional differences in our in vivo and in vitro assays. Reiteration of a second 18-amino-acid segment from the Oct-2 glutamine-rich activation domain (Q18II) was also active, but its activity was DNA-binding domain specific, because it was active when fused to the GAL4 than to the Oct-2 DNA-binding domain. The ability of separate short peptide segments derived from a single transcriptional activation domain to activate transcription after tandem reiteration emphasizes the flexible and modular nature of a transcriptional activation domain.


2004 ◽  
Vol 24 (5) ◽  
pp. 2091-2102 ◽  
Author(s):  
Chao Wei ◽  
Carolyn M. Price

ABSTRACT Pot1 is a single-stranded-DNA-binding protein that recognizes telomeric G-strand DNA. It is essential for telomere capping in Saccharomyces pombe and regulates telomere length in humans. Human Pot1 also interacts with proteins that bind the duplex region of the telomeric tract. Thus, like Cdc13 from S. cerevisiae, Pot 1 may have multiple roles at the telomere. We show here that endogenous chicken Pot1 (cPot1) is present at telomeres during periods of the cell cycle when t loops are thought to be present. Since cPot1 can bind internal loops and directly adjacent DNA-binding sites, it is likely to fully coat and protect both G-strand overhangs and the displaced G strand of a t loop. The minimum binding site of cPot1 is double that of the S. pombe DNA-binding domain. Although cPot can self associate, dimerization is not required for DNA binding and hence does not explain the binding-site duplication. Instead, the DNA-binding domain appears to be extended to contain a second binding motif in addition to the conserved oligonucleotide-oligosaccharide (OB) fold present in other G-strand-binding proteins. This second motif could be another OB fold. Although dimerization is inefficient in vitro, it may be regulated in vivo and could promote association with other telomere proteins and/or telomere compaction.


1999 ◽  
Vol 19 (4) ◽  
pp. 2880-2886 ◽  
Author(s):  
Asish K. Ghosh ◽  
Robert Steele ◽  
Ratna B. Ray

ABSTRACT We initially identified c-myc promoter binding protein 1 (MBP-1), which negatively regulates c-myc promoter activity, from a human cervical carcinoma cell expression library. Subsequent studies on the biological role of MBP-1 demonstrated induction of cell death in fibroblasts and loss of anchorage-independent growth, reduced invasive ability, and tumorigenicity of human breast carcinoma cells. To investigate the potential role of MBP-1 as a transcriptional regulator, a chimeric protein containing MBP-1 fused to the DNA binding domain of the yeast transactivator factor GAL4 was constructed. This fusion protein exhibited repressor activity on the herpes simplex virus thymidine kinase promoter via upstream GAL4 DNA binding sites. Structure-function analysis of mutant MBP-1 in the context of the GAL4 DNA binding domain revealed that MBP-1 transcriptional repressor domains are located in the N terminus (amino acids 1 to 47) and C terminus (amino acids 232 to 338), whereas the activation domain lies in the middle (amino acids 140 to 244). The N-terminal domain exhibited stronger transcriptional repressor activity than the C-terminal region. When the N-terminal repressor domain was transferred to a potent activator, transcription was strongly inhibited. Both of the repressor domains contained hydrophobic regions and had an LXVXL motif in common. Site-directed mutagenesis in the repressor domains indicated that the leucine residues in the LXVXL motif are required for transcriptional repression. Mutation of the leucine residues in the common motif of MBP-1 also abrogated the repressor activity on the c-mycpromoter. In addition, the leucine mutant forms of MBP-1 failed to suppress cell growth in fibroblasts like wild-type MBP-1. Taken together, our results indicate that MBP-1 is a complex cellular factor containing multiple transcriptional regulatory domains that play an important role in cell growth regulation.


1995 ◽  
Vol 15 (7) ◽  
pp. 3748-3758 ◽  
Author(s):  
G Bergers ◽  
P Graninger ◽  
S Braselmann ◽  
C Wrighton ◽  
M Busslinger

Constitutive expression of c-Fos, FosB, Fra-1, or c-Jun in rat fibroblasts leads to up-regulation of the immediate-early gene fra-1. Using the posttranslational FosER induction system, we demonstrate that this AP-1-dependent stimulation of fra-1 expression is rapid, depends on a functional DNA-binding domain of FosER, and is a general phenomenon observed in different cell types. In vitro mutagenesis and functional analysis of the rat fra-1 gene in stably transfected Rat-1A-FosER fibroblasts indicated that basal and AP-1-regulated expression of the fra-1 gene depends on regulatory sequences in the first intron which comprise a consensus AP-1 site and two AP-1-like elements. We have also investigated the transactivating and transforming properties of the Fra-1 protein to address the significance of fra-1 up-regulation. The entire Fra-1 protein fused to the DNA-binding domain of Ga14 is shown to lack any transactivation function, and yet it possesses oncogenic potential, as overexpression of Fra-1 in established rat fibroblasts results in anchorage-independent growth in vitro and tumor development in athymic mice, fra-1 is therefore not only induced by members of the Fos family, but its gene product may also contribute to cellular transformation by these proteins. Together, these data identify fra-1 as a unique member of the fos gene family which is under positive control by AP-1 activity.


1999 ◽  
Vol 19 (10) ◽  
pp. 6729-6741 ◽  
Author(s):  
Kristin Baetz ◽  
Brenda Andrews

ABSTRACTInSaccharomyces cerevisiae, two transcription factors, SBF (SCB binding factor) and MBF (MCB binding factor), promote the induction of gene expression at the G1/S-phase transition of the mitotic cell cycle. Swi4 and Mbp1 are the DNA binding components of SBF and MBF, respectively. The Swi6 protein is a common subunit of both transcription factors and is presumed to play a regulatory role. SBF binding to its target sequences, the SCBs, is a highly regulated event and requires the association of Swi4 with Swi6 through their C-terminal domains. Swi4 binding to SCBs is restricted to the late M and G1phases, when Swi6 is localized to the nucleus. We show that in contrast to Swi6, Swi4 remains nuclear throughout the cell cycle. This finding suggests that the DNA binding domain of Swi4 is inaccessible in the full-length protein when not complexed with Swi6. To explore this hypothesis, we expressed Swi4 and Swi6 in insect cells by using the baculovirus system. We determined that partially purified Swi4 cannot bind SCBs in the absence of Swi6. However, Swi4 derivatives carrying point mutations or alterations in the extreme C terminus were able to bind DNA or activate transcription in the absence of Swi6, and the C terminus of Swi4 inhibited Swi4 derivatives from binding DNA intrans. Full-length Swi4 was determined to be monomeric in solution, suggesting an intramolecular mechanism for auto-inhibition of binding to DNA by Swi4. We detected a direct in vitro interaction between a C-terminal fragment of Swi4 and the N-terminal 197 amino acids of Swi4, which contain the DNA binding domain. Together, our data suggest that intramolecular interactions involving the C-terminal region of Swi4 physically prevent the DNA binding domain from binding SCBs. The interaction of the carboxy-terminal region of Swi4 with Swi6 alleviates this inhibition, allowing Swi4 to bind DNA.


Sign in / Sign up

Export Citation Format

Share Document