scholarly journals Suppression of grp78 core promoter element-mediated stress induction by the dbpA and dbpB (YB-1) cold shock domain proteins.

1997 ◽  
Vol 17 (1) ◽  
pp. 61-68 ◽  
Author(s):  
W W Li ◽  
Y Hsiung ◽  
V Wong ◽  
K Galvin ◽  
Y Zhou ◽  
...  

The highly conserved grp78 core promoter element plays an important role in the induction of grp78 under diverse stress signals. Previous studies have established a functional region in the 3' half of the core (stress-inducible change region [SICR]) which exhibits stress-inducible changes in stressed nuclei. The human transcription factor YY1 is shown to bind the SICR and transactivate the core element under stress conditions. Here we report that expression library screening with the core element has identified two new core binding proteins, YB-1 and dbpA. Both proteins belong to the Y-box family of proteins characterized by an evolutionarily conserved DNA binding motif, the cold shock domain (CSD). In contrast to YY1, which binds only double-stranded SICR, the Y-box/CSD proteins much prefer the lower strand of the SICR. The Y-box proteins can repress the inducibility of the grp78 core element mediated by treatment of cells with A23187, thapsigargin, and tunicamycin. In gel shift assays, YY1 binding to the core element is inhibited by either YB-1 or dbpA. A yeast interaction trap screen using LexA-YY1 as a bait and a HeLa cell cDNA-acid patch fusion library identified YB-1 as a YY1-interacting protein. In cotransfection experiments, the Y-box proteins antagonize the YY1-mediated enhancement of transcription directed by the grp78 core in stressed cells. Thus, the CSD proteins may be part of the stress signal transduction mechanism in the mammalian system.

2006 ◽  
Vol 166 (5) ◽  
pp. 810-813 ◽  
Author(s):  
Jianyu Wu ◽  
Kazuhiro Daino ◽  
Sachiko Ichimura ◽  
Mitsuru Nenoi

1990 ◽  
Vol 10 (6) ◽  
pp. 3105-3116
Author(s):  
S D Smith ◽  
E Oriahi ◽  
D Lowe ◽  
H F Yang-Yen ◽  
D O'Mahony ◽  
...  

The protein components that direct and activate accurate transcription by rat RNA polymerase I were studied in extracts of Novikoff hepatoma ascites cells. A minimum of at least two components, besides RNA polymerase I, that are necessary for efficient utilization of templates were identified. The first factor, rat SL-1, is required for species-specific recognition of the rat RNA polymerase I promoter and may be sufficient to direct transcription by pure RNA polymerase I. Rat SL-1 directed the transcription of templates deleted to -31, the 5' boundary of the core promoter element (+1 being the transcription initiation site). The second factor, rUBF, increased the efficiency of template utilization. Transcription of deletion mutants indicated that the 5' boundary of the domain required for rUBF lay between -137 and -127. Experiments using block substitution mutants confirmed and extended these observations. Transcription experiments using those mutants demonstrated that two regions within the upstream promoter element were required for optimal levels of transcription in vitro. The first region was centered on nucleotides -129 and -124. The 5' boundary of the second domain mapped to between nucleotides -106 and -101. DNase footprint experiments using highly purified rUBF indicated that rUBF bound between -130 and -50. However, mutation of nucleotides -129 and -124 did not affect the rUBF footprint. These results indicate that basal levels of transcription by RNA polymerase I may require only SL-1 and the core promoter element. However, higher transcription levels are mediated by additional interactions of rUBF, and possibly SL-1, bound to distal promoter elements.


2007 ◽  
Vol 27 (5) ◽  
pp. 1844-1858 ◽  
Author(s):  
Yumiko Tokusumi ◽  
Ying Ma ◽  
Xianzhou Song ◽  
Raymond H. Jacobson ◽  
Shinako Takada

ABSTRACT The core promoter is a critical DNA element required for accurate transcription and regulation of transcription. Several core promoter elements have been previously identified in eukaryotes, but those cannot account for transcription from most RNA polymerase II-transcribed genes. Additional, as-yet-unidentified core promoter elements must be present in eukaryotic genomes. From extensive analyses of the hepatitis B virus X gene promoter, here we identify a new core promoter element, XCPE1 (the X gene core promoter element 1), that drives RNA polymerase II transcription. XCPE1 is located between nucleotides −8 and +2 relative to the transcriptional start site (+1) and has a consensus sequence of G/A/T-G/C-G-T/C-G-G-G/A-A-G/C+1-A/C. XCPE1 shows fairly weak transcriptional activity alone but exerts significant, specific promoter activity when accompanied by activator-binding sites. XCPE1 is also found in the core promoter regions of about 1% of human genes, particularly in poorly characterized TATA-less genes. Our in vitro transcription studies suggest that the XCPE1-driven transcription can be highly active in the absence of TFIID because it can utilize either free TBP or the complete TFIID complex. Our findings suggest the possibility of the existence of a TAF1 (TFIID)-independent transcriptional initiation mechanism that may be used by a category of TATA-less promoters in higher eukaryotes.


1997 ◽  
Vol 272 (14) ◽  
pp. 9573-9580 ◽  
Author(s):  
Nicolás P. Koritschoner ◽  
José L. Bocco ◽  
Graciela M. Panzetta-Dutari ◽  
Catherine I. Dumur ◽  
Alfredo Flury ◽  
...  

Endocrinology ◽  
2003 ◽  
Vol 144 (2) ◽  
pp. 518-527 ◽  
Author(s):  
Ruby L. C. Hoo ◽  
Elly S. W. Ngan ◽  
Peter C. K. Leung ◽  
Billy K. C. Chow

Differential usage of several transcription start sites in the human GnRH receptor gene was evident in human brain and pituitary. To locate the promoter responsible for a cluster of the 3′ CAP sites from −635 to −578 (relative to ATG) found in the pituitary, a proximal promoter element was identified at −677/−558 by 5′ and 3′ deletion mutant analysis. The promoter element drove a 13.1 ± 0.6-fold increase in reporter gene activity in an orientation-dependent manner in the mouse gonadotrope-derived αT3–1 cells. Within the core promoter element, two functional AT-rich Inr motifs, interacting with the same protein factor with different affinities, were identified. By Southwestern blot analysis and competitive gel mobility shift assays, multiple nuclear factors (36–150 kDa) were found to interact specifically with the core promoter element. Interestingly, these nuclear proteins also interacted with a previously identified distal promoter of the human GnRH receptor gene. Taken together, our studies suggested that these two promoters share common protein factors to regulate transcription initiations at two different regions. Additional mechanisms are needed to modulate the efficiencies of individual promoters for developmental and/or tissue-specific regulations.


2004 ◽  
Vol 3 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Adele McLeod ◽  
Christine D. Smart ◽  
William E. Fry

ABSTRACT We have investigated the core promoter structure of the oomycete Phytophthora infestans. The transcriptional start sites (TSS) of three previously characterized P. infestans genes, Piexo1, Piexo3, and Piendo1, were determined by primer extension analyses. The TSS regions were homologous to a previously identified 16-nucleotide (nt) core sequence that overlaps the TSS in most oomycete genes. The core promoter regions of Piexo1 and Piendo1 were investigated by using a transient protoplast expression assay and the reporter gene β-glucuronidase. Mutational analyses of the promoters of Piexo1 and Piendo1 showed that there is a putative core promoter element encompassing the TSS (−2 to + 5) that has high sequence and functional homology to a known core promoter element present in other eukaryotes, the initiator element (Inr). Downstream and flanking the Inr is a highly conserved oomycete promoter region (+7 to + 15), hereafter referred to as FPR (flanking promoter region), which is also important for promoter function. The importance of the 19-nt core promoter region (Inr and FPR) in Piexo1 and Piendo1 was further investigated through electrophoretic mobility shift assays (EMSA). The EMSA studies showed that (i) both core promoters were able to specifically bind a protein or protein complex in a P. infestans whole-cell protein extract and (ii) the same mutations that reduced binding of the EMSA complex also reduced β-glucuronidase (GUS) levels in transient expression assays. The consistency of results obtained using two different assays (GUS transient assays [in vivo] and EMSA studies [in vitro]) supports a convergence of inference about the relative importance of specific nucleotides within the 19-nt core promoter region.


1990 ◽  
Vol 10 (6) ◽  
pp. 3105-3116 ◽  
Author(s):  
S D Smith ◽  
E Oriahi ◽  
D Lowe ◽  
H F Yang-Yen ◽  
D O'Mahony ◽  
...  

The protein components that direct and activate accurate transcription by rat RNA polymerase I were studied in extracts of Novikoff hepatoma ascites cells. A minimum of at least two components, besides RNA polymerase I, that are necessary for efficient utilization of templates were identified. The first factor, rat SL-1, is required for species-specific recognition of the rat RNA polymerase I promoter and may be sufficient to direct transcription by pure RNA polymerase I. Rat SL-1 directed the transcription of templates deleted to -31, the 5' boundary of the core promoter element (+1 being the transcription initiation site). The second factor, rUBF, increased the efficiency of template utilization. Transcription of deletion mutants indicated that the 5' boundary of the domain required for rUBF lay between -137 and -127. Experiments using block substitution mutants confirmed and extended these observations. Transcription experiments using those mutants demonstrated that two regions within the upstream promoter element were required for optimal levels of transcription in vitro. The first region was centered on nucleotides -129 and -124. The 5' boundary of the second domain mapped to between nucleotides -106 and -101. DNase footprint experiments using highly purified rUBF indicated that rUBF bound between -130 and -50. However, mutation of nucleotides -129 and -124 did not affect the rUBF footprint. These results indicate that basal levels of transcription by RNA polymerase I may require only SL-1 and the core promoter element. However, higher transcription levels are mediated by additional interactions of rUBF, and possibly SL-1, bound to distal promoter elements.


Sign in / Sign up

Export Citation Format

Share Document