scholarly journals Biochemical Analysis of the Intrinsic Mcm4-Mcm6-Mcm7 DNA Helicase Activity

1999 ◽  
Vol 19 (12) ◽  
pp. 8003-8015 ◽  
Author(s):  
Zhiying You ◽  
Yuki Komamura ◽  
Yukio Ishimi

ABSTRACT Mcm proteins play an essential role in eukaryotic DNA replication, but their biochemical functions are poorly understood. Recently, we reported that a DNA helicase activity is associated with an Mcm4-Mcm6-Mcm7 (Mcm4,6,7) complex, suggesting that this complex is involved in the initiation of DNA replication as a DNA-unwinding enzyme. In this study, we have expressed and isolated the mouse Mcm2,4,6,7 proteins from insect cells and characterized various mutant Mcm4,6,7 complexes in which the conserved ATPase motifs of the Mcm4 and Mcm6 proteins were mutated. The activities associated with such preparations demonstrated that the DNA helicase activity is intrinsically associated with the Mcm4,6,7 complex. Biochemical analyses of these mutant Mcm4,6,7 complexes indicated that the ATP binding activity of the Mcm6 protein in the complex is critical for DNA helicase activity and that the Mcm4 protein may play a role in the single-stranded DNA binding activity of the complex. The results also indicated that the two activities of DNA helicase and single-stranded DNA binding can be separated.

2007 ◽  
Vol 35 (10) ◽  
pp. 3214-3222 ◽  
Author(s):  
Fujihiko Matsunaga ◽  
Annie Glatigny ◽  
Marie-Hélène Mucchielli-Giorgi ◽  
Nicolas Agier ◽  
Hervé Delacroix ◽  
...  

2001 ◽  
Vol 75 (6) ◽  
pp. 2839-2847 ◽  
Author(s):  
Chunxiao Wu ◽  
Rupa Roy ◽  
Daniel T. Simmons

ABSTRACT We have previously mapped the single-stranded DNA binding domain of large T antigen to amino acid residues 259 to 627. By using internal deletion mutants, we show that this domain most likely begins after residue 301 and that the region between residues 501 and 550 is not required. To study the function of this binding activity, a series of single-point substitutions were introduced in this domain, and the mutants were tested for their ability to support simian virus 40 (SV40) replication and to bind to single-stranded DNA. Two replication-defective mutants (429DA and 460EA) were grossly impaired in single-stranded DNA binding. These two mutants were further tested for other biochemical activities needed for viral DNA replication. They bound to origin DNA and formed double hexamers in the presence of ATP. Their ability to unwind origin DNA and a helicase substrate was severely reduced, although they still had ATPase activity. These results suggest that the single-stranded DNA binding activity is involved in DNA unwinding. The two mutants were also very defective in structural distortion of origin DNA, making it likely that single-stranded DNA binding is also required for this process. These data show that single-stranded DNA binding is needed for at least two steps during SV40 DNA replication.


1990 ◽  
Vol 10 (12) ◽  
pp. 6225-6235
Author(s):  
L Dailey ◽  
M S Caddle ◽  
N Heintz ◽  
N H Heintz

Replication of the Chinese hamster dihydrofolate reductase gene (dhfr) initiates near a fragment of stably bent DNA that binds multiple cellular factors. Investigation of protein interactions with the dhfr bent DNA sequences revealed a novel nuclear protein that also binds to domain B of the yeast origin of replication, the autonomously replicating sequence ARS1. The origin-specific DNA-binding activity was purified 9,000-fold from HeLa cell nuclear extract in five chromatographic steps. Protein-DNA cross-linking experiments showed that a 60-kDa polypeptide, which we call RIP60, contained the origin-specific DNA-binding activity. Oligonucleotide displacement assays showed that highly purified fractions of RIP60 also contained an ATP-dependent DNA helicase activity. Covalent radiolabeling with ATP indicated that the DNA helicase activity resided in a 100-kDa polypeptide, RIP100. The cofractionation of an ATP-dependent DNA helicase with an origin-specific DNA-binding activity suggests that RIP60 and RIP100 may be involved in initiation of chromosomal DNA synthesis in mammalian cells.


1990 ◽  
Vol 10 (12) ◽  
pp. 6225-6235 ◽  
Author(s):  
L Dailey ◽  
M S Caddle ◽  
N Heintz ◽  
N H Heintz

Replication of the Chinese hamster dihydrofolate reductase gene (dhfr) initiates near a fragment of stably bent DNA that binds multiple cellular factors. Investigation of protein interactions with the dhfr bent DNA sequences revealed a novel nuclear protein that also binds to domain B of the yeast origin of replication, the autonomously replicating sequence ARS1. The origin-specific DNA-binding activity was purified 9,000-fold from HeLa cell nuclear extract in five chromatographic steps. Protein-DNA cross-linking experiments showed that a 60-kDa polypeptide, which we call RIP60, contained the origin-specific DNA-binding activity. Oligonucleotide displacement assays showed that highly purified fractions of RIP60 also contained an ATP-dependent DNA helicase activity. Covalent radiolabeling with ATP indicated that the DNA helicase activity resided in a 100-kDa polypeptide, RIP100. The cofractionation of an ATP-dependent DNA helicase with an origin-specific DNA-binding activity suggests that RIP60 and RIP100 may be involved in initiation of chromosomal DNA synthesis in mammalian cells.


2007 ◽  
Vol 282 (46) ◽  
pp. 33795-33804 ◽  
Author(s):  
Matthew L. Bochman ◽  
Anthony Schwacha

The MCM2-7 complex, a hexamer containing six distinct and essential subunits, is postulated to be the eukaryotic replicative DNA helicase. Although all six subunits function at the replication fork, only a specific subcomplex consisting of the MCM4, 6, and 7 subunits (MCM467) and not the MCM2-7 complex exhibits DNA helicase activity in vitro. To understand why MCM2-7 lacks helicase activity and to address the possible function of the MCM2, 3, and 5 subunits, we have compared the biochemical properties of the Saccharomyces cerevisiae MCM2-7 and MCM467 complexes. We demonstrate that both complexes are toroidal and possess a similar ATP-dependent single-stranded DNA (ssDNA) binding activity, indicating that the lack of helicase activity by MCM2-7 is not due to ineffective ssDNA binding. We identify two important differences between them. MCM467 binds dsDNA better than MCM2-7. In addition, we find that the rate of MCM2-7/ssDNA association is slow compared with MCM467; the association rate can be dramatically increased either by preincubation with ATP or by inclusion of mutations that ablate the MCM2/5 active site. We propose that the DNA binding differences between MCM2-7 and MCM467 correspond to a conformational change at the MCM2/5 active site with putative regulatory significance.


2006 ◽  
Vol 188 (12) ◽  
pp. 4577-4580 ◽  
Author(s):  
Rajesh Kasiviswanathan ◽  
Jae-Ho Shin ◽  
Zvi Kelman

ABSTRACT The Cdc6 proteins from the archaeon Methanothermobacter thermautotrophicus were previously shown to bind double-stranded DNA. It is shown here that the proteins also bind single-stranded DNA. Using minichromosome maintenance (MCM) helicase mutant proteins unable to bind DNA, it was found that the interaction of MCM with Cdc6 inhibits the DNA binding activity of Cdc6.


2002 ◽  
Vol 22 (14) ◽  
pp. 5182-5193 ◽  
Author(s):  
Fumiko Hirose ◽  
Nobuko Ohshima ◽  
Eun-Jeong Kwon ◽  
Hideki Yoshida ◽  
Masamitsu Yamaguchi

ABSTRACT Drosophila melanogaster DNA replication-related element (DRE) factor (dDREF) is a transcriptional regulatory factor required for the expression of genes carrying the 5′-TATCGATA DRE. dDREF has been reported to bind to a sequence in the chromatin boundary element, and thus, dDREF may play a part in regulating insulator activity. To generate further insights into dDREF function, we carried out a Saccharomyces cerevisiae two-hybrid screening with DREF polypeptide as bait and identified Mi-2 as a DREF-interacting protein. Biochemical analyses revealed that the C-terminal region of Drosophila Mi-2 (dMi-2) specifically binds to the DNA-binding domain of dDREF. Electrophoretic mobility shift assays showed that dMi-2 thereby inhibits the DNA-binding activity of dDREF. Ectopic expression of dDREF and dMi-2 in eye imaginal discs resulted in severe and mild rough-eye phenotypes, respectively, whereas flies simultaneously expressing both proteins exhibited almost-normal eye phenotypes. Half-dose reduction of the dMi-2 gene enhanced the DREF-induced rough-eye phenotype. Immunostaining of polytene chromosomes of salivary glands showed that dDREF and dMi-2 bind in mutually exclusive ways. These lines of evidence define a novel function of dMi-2 in the negative regulation of dDREF by its DNA-binding activity. Finally, we postulated that dDREF and dMi-2 may demonstrate reciprocal regulation of their functions.


Sign in / Sign up

Export Citation Format

Share Document