scholarly journals The Human SWI-SNF Complex Protein p270 Is an ARID Family Member with Non-Sequence-Specific DNA Binding Activity

2000 ◽  
Vol 20 (9) ◽  
pp. 3137-3146 ◽  
Author(s):  
Peter B. Dallas ◽  
Stephen Pacchione ◽  
Deborah Wilsker ◽  
Valerie Bowrin ◽  
Ryuji Kobayashi ◽  
...  

ABSTRACT p270 is an integral member of human SWI-SNF complexes, first identified through its shared antigenic specificity with p300 and CREB binding protein. The deduced amino acid sequence of p270 reported here indicates that it is a member of an evolutionarily conserved family of proteins distinguished by the presence of a DNA binding motif termed ARID (AT-rich interactive domain). The ARID consensus and other structural features are common to both p270 and yeast SWI1, suggesting that p270 is a human counterpart of SWI1. The approximately 100-residue ARID sequence is present in a series of proteins strongly implicated in the regulation of cell growth, development, and tissue-specific gene expression. Although about a dozen ARID proteins can be identified from database searches, to date, only Bright (a regulator of B-cell-specific gene expression), dead ringer (a Drosophila melanogastergene product required for normal development), and MRF-2 (which represses expression from the cytomegalovirus enhancer) have been analyzed directly in regard to their DNA binding properties. Each binds preferentially to AT-rich sites. In contrast, p270 shows no sequence preference in its DNA binding activity, thereby demonstrating that AT-rich binding is not an intrinsic property of ARID domains and that ARID family proteins may be involved in a wider range of DNA interactions.

1991 ◽  
Vol 11 (3) ◽  
pp. 1547-1552
Author(s):  
D Leshkowitz ◽  
M D Walker

Insulin-producing cells and fibroblasts were fused to produce hybrid lines. In hybrids derived from both hamster and rat insulinoma cells, no insulin mRNA could be detected in any of seven lines examined by Northern (RNA) analysis despite the presence in each line of the insulin genes of both parental cells. Hybrid cells were transfected with recombinant chloramphenicol acetyltransferase plasmids containing defined segments of the rat insulin I gene 5' flank. We observed no transcriptional activity of the intact insulin enhancer or of IEB2, a critical cis-acting element of the insulin enhancer. IEB2 has previously been shown to interact in vitro with IEF1, a DNA-binding activity observed selectively in insulin-producing cells. Hybrid cells showed no detectable IEF1 activity. Furthermore, the insulin enhancer was unable to reduce transcription directed by the Moloney sarcoma virus enhancer in a double-enhancer construct. Thus, extinction of insulin gene expression in the hybrids apparently does not operate through a direct action of repressors on the insulin enhancer; rather, extinction is accompanied by, and may be caused by, reduced DNA-binding activity of the putative transcriptional activator IEF1.


1994 ◽  
Vol 14 (3) ◽  
pp. 1852-1860
Author(s):  
K Nakagomi ◽  
Y Kohwi ◽  
L A Dickinson ◽  
T Kohwi-Shigematsu

The nuclear matrix attachment DNA (MAR) binding protein SATB1 is a sequence context-specific binding protein that binds in the minor groove, making virtually no contact with the DNA bases. The SATB1 binding sites consist of a special AT-rich sequence context in which one strand is well-mixed A's, T's, and C's, excluding G's (ATC sequences), which is typically found in clusters within different MARs. To determine the extent of conservation of the SATB1 gene among different species, we cloned a mouse homolog of the human STAB1 cDNA from a cDNA expression library of the mouse thymus, the tissue in which this protein is predominantly expressed. This mouse cDNA encodes a 764-amino-acid protein with a 98% homology in amino acid sequence to the human SATB1 originally cloned from testis. To characterize the DNA binding domain of this novel class of protein, we used the mouse SATB1 cDNA and delineated a 150-amino-acid polypeptide as the binding domain. This region confers full DNA binding activity, recognizes the specific sequence context, and makes direct contact with DNA at the same nucleotides as the whole protein. This DNA binding domain contains a novel DNA binding motif: when no more than 21 amino acids at either the N- or C-terminal end of the binding domain are deleted, the majority of the DNA binding activity is lost. The concomitant presence of both terminal sequences is mandatory for binding. These two terminal regions consist of hydrophilic amino acids and share homologous sequences that are different from those of any known DNA binding motifs. We propose that the DNA binding region of SATB1 extends its two terminal regions toward DNA to make direct contact with DNA.


Blood ◽  
1993 ◽  
Vol 82 (8) ◽  
pp. 2470-2477 ◽  
Author(s):  
JH Park ◽  
L Levitt

Abstract Transfected Jurkat cells overexpressing extracellular signal-regulated kinase (ERK1), also referred to as mitogen-activated protein (MAP) kinase, were selected by Western blotting assay using anti-ERK1 and antiphosphotyrosine antibodies in combination with a functional MAP kinase assay. We then asked whether enhanced ERK1 expression had any effect on induction of T-cell cytokine genes. The results show that overexpression of ERK1 enhances expression of T-cell interleukin-2 (IL- 2), IL-3, and granulocyte-macrophage colony-stimulating factor mRNA; no change was seen in expression of the alpha-actin gene. DNA-binding activities of the transcription factors AP1, NF-AT, and NF-kB were specifically increased twofold to fourfold in ERK1-overexpressing clones relative to nontransformed or vector-transformed cells, whereas no enhancement of CK1-CK2 protein DNA binding activity was detected after ERK1 overexpression. Additionally, increased NF-AT DNA binding activity was associated with functional enhancement of NF-AT transactivating activity in ERK1-overexpressing cells. These results provide direct evidence for the role of MAP kinase in the regulation of cytokine gene expression and indicate that such regulation is likely mediated through the enhanced DNA binding activity of specific nuclear transcription factors.


2003 ◽  
Vol 81 (3) ◽  
pp. 141-150 ◽  
Author(s):  
Ella Kim ◽  
Wolfgang Deppert

The most import biological function of the tumor suppressor p53 is that of a sequence-specific transactivator. In response to a variety of cellular stress stimuli, p53 induces the transcription of an ever-increasing number of target genes, leading to growth arrest and repair, or to apoptosis. Long considered as a "latent" DNA binder that requires prior activation by C-terminal modification, recent data provide strong evidence that the DNA binding activity of p53 is strongly dependent on structural features within the target DNA and is latent only if the target DNA lacks a certain structural signal code. In this review we discuss evidence for complex interactions of p53 with DNA, which are strongly dependent on the dynamics of DNA structure, especially in the context of chromatin. We provide a model of how this complexity may serve to achieve selectivity of target gene regulation by p53 and how DNA structure in the context of chromatin may serve to modulate p53 functions.Key words: tumor suppressor p53, sequence-specific DNA binding, DNA conformation, chromatin, chromatin remodeling.


1998 ◽  
Vol 330 (1) ◽  
pp. 335-343 ◽  
Author(s):  
M. Bahaa FADEL ◽  
C. Stephane BOUTET ◽  
Thomas QUERTERMOUS

To investigate the molecular basis of endothelial cell-specific gene expression, we have examined the DNA sequences and the cognate DNA-binding proteins that mediate transcription of the murine tie2/tek gene. Reporter transfection experiments conformed with earlier findings in transgenic mice, indicating that the upstream promoter of Tie2/Tek is capable of activating transcription in an endothelial cell-specific fashion. These experiments have also allowed the identification of a single upstream inhibitory region (region I) and two positive regulatory regions (regions U and A) in the proximal promoter. Electrophoretic mobility-shift assays have allowed further characterization of three novel DNA-binding sequences associated with these regions and have provided preliminary characterization of the protein factors binding to these elements. Two of the elements (U and A) confer increased transcription on a heterologous promoter, with element U functioning in an endothelial-cell-selective manner. By employing embryonic endothelial-like yolk sac cells in parallel with adult-derived endothelial cells, we have identified differences in functional activity and protein binding that may reflect mechanisms for specifying developmental regulation of tie2/tek expression. Further study of the DNA and protein elements characterized in these experiments is likely to provide new insight into the molecular basis of developmental- and cell-specific gene expression in the endothelium.


1994 ◽  
Vol 14 (3) ◽  
pp. 1852-1860 ◽  
Author(s):  
K Nakagomi ◽  
Y Kohwi ◽  
L A Dickinson ◽  
T Kohwi-Shigematsu

The nuclear matrix attachment DNA (MAR) binding protein SATB1 is a sequence context-specific binding protein that binds in the minor groove, making virtually no contact with the DNA bases. The SATB1 binding sites consist of a special AT-rich sequence context in which one strand is well-mixed A's, T's, and C's, excluding G's (ATC sequences), which is typically found in clusters within different MARs. To determine the extent of conservation of the SATB1 gene among different species, we cloned a mouse homolog of the human STAB1 cDNA from a cDNA expression library of the mouse thymus, the tissue in which this protein is predominantly expressed. This mouse cDNA encodes a 764-amino-acid protein with a 98% homology in amino acid sequence to the human SATB1 originally cloned from testis. To characterize the DNA binding domain of this novel class of protein, we used the mouse SATB1 cDNA and delineated a 150-amino-acid polypeptide as the binding domain. This region confers full DNA binding activity, recognizes the specific sequence context, and makes direct contact with DNA at the same nucleotides as the whole protein. This DNA binding domain contains a novel DNA binding motif: when no more than 21 amino acids at either the N- or C-terminal end of the binding domain are deleted, the majority of the DNA binding activity is lost. The concomitant presence of both terminal sequences is mandatory for binding. These two terminal regions consist of hydrophilic amino acids and share homologous sequences that are different from those of any known DNA binding motifs. We propose that the DNA binding region of SATB1 extends its two terminal regions toward DNA to make direct contact with DNA.


2000 ◽  
Vol 279 (2) ◽  
pp. C326-C334 ◽  
Author(s):  
Hong Jin Kim ◽  
B. Mark Evers ◽  
David A. Litvak ◽  
Mark R. Hellmich ◽  
Courtney M. Townsend

The hormone bombesin (BBS) and its mammalian equivalent gastrin-releasing peptide (GRP) act through specific GRP receptors (GRP-R) to affect multiple cellular functions in the gastrointestinal tract; the intracellular signaling pathways leading to these effects are not clearly defined. Previously, we demonstrated that the human gastric cancer SIIA possesses GRP-R and that BBS stimulates activator protein-1 (AP-1) gene expression. The purpose of our present study was to determine the signaling pathways leading to AP-1 induction in SIIA cells. A rapid induction of c- jun and jun-B gene expression was noted after BBS treatment; this effect was blocked by specific GRP-R antagonists, indicating that BBS is acting through the GRP-R. The signaling pathways leading to increased AP-1 gene expression were delineated using phorbol 12-myristate 13-acetate (PMA), which stimulates protein kinase C (PKC)-dependent pathways, by forskolin (FSK), which stimulates protein kinase A (PKA)-dependent pathways, and by the use of various protein kinase inhibitors. Treatment with PMA stimulated AP-1 gene expression and DNA binding activity similar to the effects noted with BBS; FSK stimulated jun-B expression but produced only minimal increases of c- jun mRNA and AP-1 binding activity. Pretreatment of SIIA cells with either H-7 or H-8 (primarily PKC inhibitors) inhibited the induction of c- jun and jun-B mRNAs in response to BBS, whereas H-89 (PKA inhibitor) exhibited only minimal effects. Pretreatment with tyrphostin-25, a protein tyrosine kinase (PTK) inhibitor, attenuated the BBS-mediated induction of c- jun and jun-B, but the effect was not as pronounced as with H-7. Collectively, our results demonstrate that BBS acts through its receptor to produce a rapid induction of both c- jun and jun-B mRNA and AP-1 DNA binding activity in the SIIA human gastric cancer. Moreover, this induction of AP-1, in response to BBS, is mediated through both PKC- and PTK-dependent signal transduction pathways with only minimal involvement of PKA.


1990 ◽  
Vol 10 (2) ◽  
pp. 859-862
Author(s):  
G M Santangelo ◽  
J Tornow

Glycolytic gene expression in Saccharomyces cerevisiae is thought to be activated by the GCR and TUF proteins. We tested the hypothesis that GCR function is mediated by TUF/GRF/RAP binding sites (UASRPG elements). We found that UASRPG-dependent activation of a heterologous gene and transcription of ADH1, TEF1, TEF2, and RP59 were sensitive to GCR1 disruption. GCR is not required for TUF/GRF/RAP expression or in vitro DNA-binding activity.


Sign in / Sign up

Export Citation Format

Share Document