scholarly journals Two functional estrogen response elements are located upstream of the major chicken vitellogenin gene.

1988 ◽  
Vol 8 (3) ◽  
pp. 1123-1131 ◽  
Author(s):  
J B Burch ◽  
M I Evans ◽  
T M Friedman ◽  
P J O'Malley

We used a transient-expression assay to identify two estrogen response elements (EREs) associated with the major chicken vitellogenin gene (VTGII). Each element was characterized by its ability to confer estrogen responsiveness when cloned in either orientation next to a chimeric reporter gene consisting of the herpes simplex virus thymidine kinase promoter and the chloramphenicol acetyl transferase-coding region. Deletion analyses indicated that sequences necessary for the distal ERE resided within the region from -626 to -613 (nucleotide positions relative to the VTGII start site) whereas those necessary for the proximal ERE were within the region from -358 to -335. These distal and proximal elements contain, respectively, a perfect copy and an imperfect copy of the 13-base-pair sequence that is an essential feature of the EREs associated with two frog vitellogenin genes. These chicken VTGII EREs mapped near regions that were restructured at the chromatin level when the endogenous VTGII gene was expressed in the liver in response to estradiol. These data suggest a model for the tissue-specific expression of this estrogen-responsive gene.

1988 ◽  
Vol 8 (3) ◽  
pp. 1123-1131
Author(s):  
J B Burch ◽  
M I Evans ◽  
T M Friedman ◽  
P J O'Malley

We used a transient-expression assay to identify two estrogen response elements (EREs) associated with the major chicken vitellogenin gene (VTGII). Each element was characterized by its ability to confer estrogen responsiveness when cloned in either orientation next to a chimeric reporter gene consisting of the herpes simplex virus thymidine kinase promoter and the chloramphenicol acetyl transferase-coding region. Deletion analyses indicated that sequences necessary for the distal ERE resided within the region from -626 to -613 (nucleotide positions relative to the VTGII start site) whereas those necessary for the proximal ERE were within the region from -358 to -335. These distal and proximal elements contain, respectively, a perfect copy and an imperfect copy of the 13-base-pair sequence that is an essential feature of the EREs associated with two frog vitellogenin genes. These chicken VTGII EREs mapped near regions that were restructured at the chromatin level when the endogenous VTGII gene was expressed in the liver in response to estradiol. These data suggest a model for the tissue-specific expression of this estrogen-responsive gene.


2019 ◽  
Author(s):  
Masaya Matsubayashi ◽  
Yoshihiko M. Sakaguchi ◽  
Yoshiki Sahara ◽  
Hitoki Nanaura ◽  
Sotaro Kikuchi ◽  
...  

AbstractElevated levels of uric acid, a metabolite of purine in humans, is related to various diseases, such as gout, atherosclerosis and renal dysfunction. The excretion and reabsorption of uric acid to/from urine is tightly regulated by uric acid transporters. The amino acid sequences of uric acid reabsorption transporters, URAT1/SLC22A12, OAT4/SLC22A11, and OAT10/SLC22A13, share closer phylogenic relationship, whereas the gene promoter sequences are distant phylogenic relationship. Through the single-cell RNA-sequencing analysis of an adult human kidney, we found that only a small number of cells express these transporters, despite their role in the regulation of serum uric acid levels. Transcriptional motif analysis on these transporter genes, revealed that the URAT1/SLC22A12 gene promoter displayed the most conserved estrogen response elements (EREs) among the three transporters. The endogenous selective estrogen receptor modulator (SERM) 27-hydroxycholesterol (27HC) had positive effects on the transcriptional activity of URAT1/SLC22A12. We also found that 27HC increased the protein and gene expression of URAT1/SLC22A12 in mouse kidneys and human kidney organoids, respectively. These results strongly suggest the role of 27HC for URAT1/SLC22A12 expression in renal proximal tubules and upregulation of serum uric acid levels and also show the relationship between cholesterol metabolism and serum uric acid regulation.Significance StatementThe elevated levels of serum uric acid cause various diseases, and the excretion/reabsorption of uric acid to/from urine is tightly regulated by the uric acid transporters. We found that despite the role in serum uric acid regulation, only a small number of cells express URAT1/SLC22A12. We also found that URAT1/SLC22A12 gene promoter region has effective estrogen response elements, and endogenous selective estrogen receptor (ER) modulator 27-hydroxycholesterol (27HC) increased URAT1/SLC22A12 expression in the mice kidneys and human kidney organoids. These suggest that 27HC increases URAT1/SLC22A12 expression and upregulate serum uric acid levels. Since 27HC connects cholesterol metabolism, our study indicates the important link between cholesterol metabolism and serum uric acid regulation, and also provides a novel therapeutic approach to hyperuricemia.


1985 ◽  
Vol 5 (9) ◽  
pp. 2443-2453 ◽  
Author(s):  
A Israel ◽  
S N Cohen

We report results indicating that expression and hormonally controlled negative regulation of the human pro-opiomelanocortin (POMC) gene in mouse fibroblasts can be accomplished by the placement nearby of a simian virus 40 enhancer sequence. Expression resulting from correctly initiated transcription required the enhancer in cis both in cells stably transfected with the POMC gene and in a transient expression assay with constructs that fused that POMC promoter region to the protein-coding region of the herpes simplex virus thymidine kinase (TK) gene. Negative regulation of POMC transcription by glucocorticoids was demonstrated in transiently infected cells by assaying for TK activity encoded by the POMC-TK fusion constructs and by quantitative S1 nuclease mapping. The sequences responsible for such regulation were shown to be contained within a DNA segment that extends 670 base pairs upstream from the cap site for POMC mRNA.


2011 ◽  
Author(s):  
Raveendra I. Mathad ◽  
Zhenjiang Zhang ◽  
Feng-jue Shu ◽  
Xi Chen ◽  
Megan Carver ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document