estrogen signaling
Recently Published Documents


TOTAL DOCUMENTS

679
(FIVE YEARS 174)

H-INDEX

63
(FIVE YEARS 4)

2022 ◽  
Vol 11 ◽  
Author(s):  
Yusheng Guo ◽  
Guohui Wu ◽  
Junrong Yi ◽  
Qin Yang ◽  
Wengong Jiang ◽  
...  

There are significant gender differences in the incidence and mortality of hepatocellular carcinoma (HCC). Compared with men, the incidence and mortality of HCC in women are relatively low. The estrogen signaling pathway, composed of estrogen and estrogen receptors, has been postulated to have a protective effect on the occurrence and development of HCC. There have been multiple studies that have supported anti-HCC effects of the estrogen signaling pathways, including direct and indirect pathways such as genomic pathways, rapid transduction pathways, non-coding RNA, tumor microenvironment, estrogen metabolites, and inhibition of hepatitis infection and replication. Based on the evidence of an anti-HCC effect of the estrogen signaling pathway, a number of strategies have been investigated to determine the potential therapeutic effect. These have included estrogen replacement therapy, targeting the estrogen receptor, key molecules, inflammatory mediators, and regulatory pathways of the estrogen signaling pathway. In this review, we have systematically summarized the latest developments in the complex functions and molecular mechanisms of the estrogen signaling pathway in liver cancer. Furthermore, we have highlighted the potential targets of treatment strategies based on the estrogen signaling pathway in the treatment of liver cancer and the principal obstacles currently encountered for future investigation.


2022 ◽  
Author(s):  
Yikong Lin ◽  
Yunyun Li ◽  
Yue Li ◽  
Dajin Li ◽  
Xiaolin Wang ◽  
...  

Abstract Background: Endometriosis (EMS), an estrogen-dependent disease, is characterized by dysregulated inflammation and increased estrogen in ectopic lesions. However, the crosstalk and pathogenic mechanism of inflammation and estrogen has not been fully explored. SCM-198 is the synthetic form of leonurine with multiple pharmacological activities. Whether SCM-198 could inhibit the progress of EMS by regulating inflammation and estrogen signaling remains unknown. Methods: The therapeutic effects and potential mechanisms of SCM-198 on EMS were analyzed by establishing EMS mice models and performing RNA-seq assay. ELISA was performed to detect estrogen and TNF-α concentration in normal endometrial stromal cells (nESCs) and ectopic endometrial stromal cells (eESCs), with or without SCM-198 treatment. Western blotting, RNA silencing and plasmid overexpression were utilized to analyze the relationship among inflammation, endocrine and autophagy as well as the regulation of SCM-198 on inflammation-endocrine-autophagy axis. Results: Increased estrogen-ERα signaling and decreased PR expression co-led to the hypo-autophagy state in eESCs, which further inhibited the apoptosis of eESCs. Highly expressed TNF-α in eESCs enhanced low-autophagy mediated anti-apoptosis effect by activating aromatase-estrogen-ERα signaling. SCM-198 inhibited the growth of ectopic lesions in EMS mouse model and promoted the apoptosis of eESCs both in vivo and in vitro. The apoptosis effect of SCM-198 on eESCs were realized by upregulating the autophagy level via inhibiting TNF-α activated aromatase-estrogen-ERα signaling and increasing PR expression. Conclusion: Inflammation facilitated the progress of EMS by disturbing estrogen regulatory axis. SCM-198 restrained the growth of EMS by regulating inflammation-endocrine-autophagy axis.


Author(s):  
Megan A Sylvester ◽  
Dennis P Pollow ◽  
Caitlin Moffett ◽  
Wendy Nunez ◽  
Jennifer L Uhrlaub ◽  
...  

Premenopausal females are protected from Angiotensin II (Ang II)-induced hypertension following the adoptive transfer of T cells from normotensive donors. For the present study, we hypothesized that the transfer of hypertensive T cells (HT) or splenocytes (HS) from hypertensive donors would eliminate premenopausal protection from hypertension. Premenopausal Rag-1-/- females received either normotensive (NT) or hypertensive cells, three weeks prior to Ang II infusion (14 days, 490 ng/kg/min). Contrary to our hypothesis, no increase in Ang II-induced blood pressure was observed in the NT/Ang or HT/Ang groups. Flow cytometry demonstrated that renal FoxP3+ T regulatory cells were significantly decreased and IHC showed an increase in renal F4/80+ macrophages in HT/Ang, suggesting a shift in the renal inflammatory environment despite no change in blood pressure. Renal mRNA expression of MCP-1, Endothelin-1, GPER-1 were significantly decreased in HT/Ang. The adoptive transfer of hypertensive splenocytes prior to Ang II infusion (HS/Ang) eliminated premenopausal protection from hypertension and significantly decreased splenic FoxP3+ T regulatory cells compared to females receiving normotensive splenocytes (NS/Ang). Expression of MIP-1a/CCL3, a potent macrophage chemokine was elevated in HS/Ang, however no increase in renal macrophage infiltration occurred. Together, these data show that in premenopausal females T cells from hypertensive donors are not sufficient to induce a robust Ang II mediated hypertension, in contrast, transfer of hypertensive splenocytes (consisting of T/B lymphocytes, dendritic cells, macrophages) is sufficient. Further work is needed to understand how innate and adaptive immune cells and estrogen signaling coordinate to cause differential hypertensive outcomes in premenopausal females.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Hui-Ju Chang ◽  
Ueng-Cheng Yang ◽  
Mei-Yu Lai ◽  
Chen-Hsin Chen ◽  
Yang-Cheng Fann

AbstractAlthough the function of the BRCA1 gene has been extensively studied, the relationship between BRCA1 gene expression and tumor aggressiveness remains controversial in sporadic breast cancers. Because the BRCA1 protein is known to regulate estrogen signaling, we selected microarray data of ER+ breast cancers from the GEO public repository to resolve previous conflicting findings. The BRCA1 gene expression level in highly proliferative luminal B tumors was shown to be higher than that in luminal A tumors. Survival analysis using a cure model indicated that patients of early ER+ breast cancers with high BRCA1 expression developed rapid distant metastasis. In addition, the proliferation marker genes MKI67 and PCNA, which are characteristic of aggressive tumors, were also highly expressed in patients with high BRCA1 expression. The associations among high BRCA1 expression, high proliferation marker expression, and high risk of distant metastasis emerged in independent datasets, regardless of tamoxifen treatment. Tamoxifen therapy could improve the metastasis-free fraction of high BRCA1 expression patients. Our findings link BRCA1 expression with proliferation and possibly distant metastasis via the ER signaling pathway. We propose a testable hypothesis based on these consistent results and offer an interpretation for our reported associations.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jinlong Zhao ◽  
Fangzheng Lin ◽  
Guihong Liang ◽  
Yanhong Han ◽  
Nanjun Xu ◽  
...  

ObjectiveTo explore the effective components and mechanism of Polygonati Rhizoma (PR) in the treatment of osteoporosis (OP) based on network pharmacology and molecular docking methods.MethodsThe effective components and predicted targets of PR were obtained through the Traditional Chinese Medicine Systems Pharmacology and Analysis Platform (TCMSP) database. The disease database was used to screen the disease targets of OP. The obtained key targets were uploaded to the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database for protein-protein interaction (PPI) network analysis. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of key targets. Analysis and docking verification of chemical effective drug components and key targets were performed with IGEMDOCK software.ResultsA total of 12 chemically active components, 84 drug target proteins and 84 common targets related to drugs and OP were obtained. Key targets such as JUN, TP53, AKT1, ESR1, MAPK14, AR and CASP3 were identified through PPI network analysis. The results of enrichment analysis showed that the potential core drug components regulate the HIF-1 signaling pathway, PI3K-Akt signaling pathway, estrogen signaling pathway and other pathways by intervening in biological processes such as cell proliferation and apoptosis and estrogen response regulation, with an anti-OP pharmacological role. The results of molecular docking showed that the key targets in the regulatory network have high binding activity to related active components.ConclusionsPR may regulate OP by regulating core target genes, such as JUN, TP53, AKT1, ESR1, AR and CASP3, and acting on multiple key pathways, such as the HIF-1 signaling pathway, PI3K-Akt signaling pathway, and estrogen signaling pathway.


2022 ◽  
Author(s):  
Mithil Soni ◽  
Ozge Saatci ◽  
Gourab Gupta ◽  
Yogin Patel ◽  
Manikanda Raja Keerthi Raja ◽  
...  

Abstract Background: Approximately 75% of diagnosed breast cancer tumors are estrogen-receptor (ER) positive tumors and are associated with better prognosis due to their response to hormonal therapies. However, around 40% of patients relapse after hormonal therapies. In the current study, we aim to evaluate miR-489 as a novel molecular target to combat tamoxifen resistance. Methods: Genomic analysis of gene expression profiles in primary breast cancers and tamoxifen resistant cell lines unveiled the potential role of miR-489 in regulation of estrogen signaling and development of tamoxifen resistance. We manipulated miR-489 expression in breast cancer cell lines by transient transfection of a miR-489 mimic or establishment of knockout cell lines using the CRISPR/Cas9 system to study the reciprocal regulation of miR-489 and estrogen/ER signaling pathways. Cell proliferation assays, Sphere-formation assays and flow cytometry analysis were conducted to investigate the role of miR-489 in estrogen-induced cell proliferation, cancer stem cell expansion and development of tamoxifen resistance. Results: miR-489 expression was significantly downregulated in tamoxifen-resistant cell lines. Low levels of miR-489 were associated with poor clinical outcomes in patients with hormone treatment. In vitro analysis showed that loss of miR-489 expression promoted tamoxifen resistance while overexpression of miR-489 in tamoxifen-resistant cells restored tamoxifen sensitivity. Mechanistically, we found that miR-489 is an estrogen regulated miRNA that negatively regulated estrogen receptor signaling by using at least the following two mechanisms: i) modulation of ER phosphorylation status by inhibiting MAPK and AKT kinase activities and downregulating SHP2 expression; ii) regulation of nucleus to cytosol translocation of estrogen receptor α (ERα) by decreasing p38 expression and consequently ER phosphorylation. In addition, miR-489 could break the positive feed-forward loop between the estrogen-ERα axis and p38 MAPK in breast cancer cells, which was necessary for its function as a transcription factor. Conclusion: Our study unveiled the underlying molecular mechanism by which miR-489 regulates estrogen signaling pathway through a negative feedback loop and uncovered its role in both the development of and overcoming of tamoxifen resistance in breast cancers.


Author(s):  
Amber Douglass ◽  
Michael Dattilo ◽  
Andrew J. Feola

AbstractGlaucoma is a leading cause of irreversible blindness worldwide and is characterized by progressive loss of visual function and retinal ganglion cells (RGC). Current epidemiological, clinical, and basic science evidence suggest that estrogen plays a role in the aging of the optic nerve. Menopause, a major biological life event affecting all women, coincides with a decrease in circulating sex hormones, such as estrogen. While 59% of the glaucomatous population are females, sex is not considered a risk factor for developing glaucoma. In this review, we explore whether menopause is a sex-specific risk factor for glaucoma. First, we investigate how menopause is defined as a sex-specific risk factor for other pathologies, including cardiovascular disease, osteoarthritis, and bone health. Next, we discuss clinical evidence that highlights the potential role of menopause in glaucoma. We also highlight preclinical studies that demonstrate larger vision and RGC loss following surgical menopause and how estrogen is protective in models of RGC injury. Lastly, we explore how surgical menopause and estrogen signaling are related to risk factors associated with developing glaucoma (e.g., intraocular pressure, aqueous outflow resistance, and ocular biomechanics). We hypothesize that menopause potentially sets the stage to develop glaucoma and therefore is a sex-specific risk factor for this disease. Graphical Abstract


Author(s):  
Haolin Zhang ◽  
Pengyu Chen ◽  
Yuxin Liu ◽  
Wenqian Xie ◽  
Sijie Fan ◽  
...  

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 206
Author(s):  
Chandra K. Maharjan ◽  
Jiao Mo ◽  
Lei Wang ◽  
Myung-Chul Kim ◽  
Samuel Wang ◽  
...  

The oncogenic role of estrogen receptor (ER) signaling in breast cancer has long been established. Interaction of estrogen with estrogen receptor (ER) in the nucleus activates genomic pathways of estrogen signaling. In contrast, estrogen interaction with the cell membrane-bound G-protein-coupled estrogen receptor (GPER) activates the rapid receptor-mediated signaling transduction cascades. Aberrant estrogen signaling enhances mammary epithelial cell proliferation, survival, and angiogenesis, hence is an important step towards breast cancer initiation and progression. Meanwhile, a growing number of studies also provide evidence for estrogen’s pro- or anti-inflammatory roles. As other articles in this issue cover classic ER and GPER signaling mediated by estrogen, this review will discuss the crucial mechanisms by which estrogen signaling influences chronic inflammation and how that is involved in breast cancer. Xenoestrogens acquired from plant diet or exposure to industrial products constantly interact with and alter innate estrogen signaling at various levels. As such, they can modulate chronic inflammation and breast cancer development. Natural xenoestrogens generally have anti-inflammatory properties, which is consistent with their chemoprotective role in breast cancer. In contrast, synthetic xenoestrogens are proinflammatory and carcinogenic compounds that can increase the risk of breast cancer. This article also highlights important xenoestrogens with a particular focus on their role in inflammation and breast cancer. Improved understanding of the complex relationship between estrogens, inflammation, and breast cancer will guide clinical research on agents that could advance breast cancer prevention and therapy.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yi Kuan Du ◽  
Yue Xiao ◽  
Shao Min Zhong ◽  
Yi Xing Huang ◽  
Qian Wen Chen ◽  
...  

Alzheimer’s disease is a common neurodegenerative disease in the elderly. This study explored the curative effect and possible mechanism of Acori graminei rhizoma on Alzheimer’s disease. In this paper, 8 active components of Acori graminei rhizoma were collected by consulting literature and using the TCMSP database, and 272 targets were screened using the PubChem and Swiss Target Prediction databases. Introduce it into the software of Cytoscape 3.7.2 and establish the graph of “drug-active ingredient-ingredient target.” A total of 276 AD targets were obtained from OMIM, Gene Cards, and DisGeNET databases. Import the intersection targets of drugs and diseases into STRING database for enrichment analysis, and build PPI network in the Cytoscape 3.7.2 software, whose core targets involve APP, AMPK, NOS3, etc. GO analysis and KEGG analysis showed that there were 195 GO items and 30 AD-related pathways, including Alzheimer’s disease pathway, serotonin synapse, estrogen signaling pathway, dopaminergic synapse, and PI3K-Akt signaling pathway. Finally, molecular docking was carried out to verify the binding ability between Acori graminei rhizoma and core genes. Our results predict that Acori graminei rhizoma can treat AD mainly by mediating Alzheimer’s signal pathway, thus reducing the production of Aβ, inhibiting the hyperphosphorylation of tau protein, regulating neurotrophic factors, and regulating the activity of kinase to change the function of the receptor.


Sign in / Sign up

Export Citation Format

Share Document