scholarly journals Tracking Microbial Evolution in the Subseafloor Biosphere

mSystems ◽  
2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Rika E. Anderson

The deep marine subsurface constitutes a massive biosphere that hosts a multitude of archaea, bacteria, and viruses across a diversity of habitats. These microbes play key roles in mediating global biogeochemical cycles, and the marine subsurface is thought to have been among the earliest habitats for life on Earth.

2021 ◽  
Vol 9 (1) ◽  
pp. 082-093
Author(s):  
Arlette Galván González ◽  
Rocío Pérez y Terrón

Extremophilic microorganisms are organisms capable of proliferating under extreme conditions that are generally detrimental to most life on Earth. They are organisms considered of importance in different areas of research, due to their ability to produce proteins and enzymes under inhospitable conditions. Therefore, in the present work, the information on their participation in the processes of biogeochemical cycles was collected and analyzed in order to demonstrate their ecological importance. Recent studies on the metabolic pathways of the Extremophilic microorganisms and their environment have shown that most of the archaea, some bacteria and cyanobacteria carry out metabolic activities essential for the biogeochemical cycles of sulfur, carbon and nitrogen. Archaea and bacteria being one of the main microorganisms that participate in a variety of processes such as sulfidogenesis, methanogenesis, ANAMMOX (anaerobic ammonium oxidation), among others. This has suggested that Extremophilic microorganisms and extreme ecosystems have a significant impact on global biogeochemical cycles.


2020 ◽  
Vol 9 (1) ◽  
pp. 23
Author(s):  
Caroline M. Plugge ◽  
Diana Z. Sousa

Anaerobic microorganisms, Bacteria and Archaea, have an essential role in global biogeochemical cycles [...]


Eos ◽  
2005 ◽  
Vol 86 (44) ◽  
pp. 434
Author(s):  
Mohi Kumar

2016 ◽  
Vol 2 (10) ◽  
pp. e1600492 ◽  
Author(s):  
Roberto Danovaro ◽  
Antonio Dell’Anno ◽  
Cinzia Corinaldesi ◽  
Eugenio Rastelli ◽  
Ricardo Cavicchioli ◽  
...  

Viruses are the most abundant biological entities in the world’s oceans, and they play a crucial role in global biogeochemical cycles. In deep-sea ecosystems, archaea and bacteria drive major nutrient cycles, and viruses are largely responsible for their mortality, thereby exerting important controls on microbial dynamics. However, the relative impact of viruses on archaea compared to bacteria is unknown, limiting our understanding of the factors controlling the functioning of marine systems at a global scale. We evaluate the selectivity of viral infections by using several independent approaches, including an innovative molecular method based on the quantification of archaeal versus bacterial genes released by viral lysis. We provide evidence that, in all oceanic surface sediments (from 1000- to 10,000-m water depth), the impact of viral infection is higher on archaea than on bacteria. We also found that, within deep-sea benthic archaea, the impact of viruses was mainly directed at members of specific clades of Marine Group I Thaumarchaeota. Although archaea represent, on average, ~12% of the total cell abundance in the top 50 cm of sediment, virus-induced lysis of archaea accounts for up to one-third of the total microbial biomass killed, resulting in the release of ~0.3 to 0.5 gigatons of carbon per year globally. Our results indicate that viral infection represents a key mechanism controlling the turnover of archaea in surface deep-sea sediments. We conclude that interactions between archaea and their viruses might play a profound, previously underestimated role in the functioning of deep-sea ecosystems and in global biogeochemical cycles.


2019 ◽  
Author(s):  
Emily Zakem ◽  
Martin Polz ◽  
Mick Follows

Sign in / Sign up

Export Citation Format

Share Document