global biogeochemical cycles
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 62)

H-INDEX

28
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Jessica Droujko ◽  
Peter Molnar

Abstract Fine sediment transport in rivers is important for catchment nutrient fluxes, global biogeochemical cycles, water quality and pollution in riverine, coastal and marine ecosystems. Monitoring of suspended sediment in rivers with current sensors is challenging and expensive and most monitoring setups are restricted to few single site measurements. To better understand the spatial heterogeneity of fine sediment sources and transport in river networks there is a need for new smart water turbidity sensing that is multi-site, accurate and affordable. In this work, we have created such a sensor, which detects scattered light from an LED source using two detectors in a control volume, and can be placed in a river. We compare several replicates of our sensor to different commercial turbidity probes in a mixing tank experiment using two sediment types over a wide range of typical concentrations observed in rivers. Our results show that we can achieve precise and reproducible turbidity measurements in the 0-4000 NTU or 0-16g/L range. Our sensor can also be used directly as a suspended sediment sensor and bypass an unnecessary calibration to Formazin. The developed turbidity sensor is much cheaper than existing options of comparable quality and is especially intended for distributed sensing across river networks.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 40
Author(s):  
Ran Meng ◽  
Lin Zhang ◽  
Chengxu Zhou ◽  
Kai Liao ◽  
Peng Xiao ◽  
...  

Chrysotila is a genus of coccolithophores. Together with Emiliania, it is one of the representative genera in the Haptophyta which have been extensively studied. They are photosynthetic unicellular marine algae sharing the common characteristic of the production of CaCO3 platelets (coccoliths) on the surface of their cells and are crucial contributors to global biogeochemical cycles. Here, we report the genome assembly of Chrysotila roscoffensis. The assembled genome size was ~636 Mb distributed across 769 scaffolds with N50 of 1.63 Mb, and maximum contig length of ~2.6 Mb. Repetitive elements accounted for approximately 59% of the genome. A total of 23,341 genes were predicted from C. roscoffensis genome. The divergence time between C. roscoffensis and Emiliania huxleyi was estimated to be around 537.6 Mya. Gene families related to cytoskeleton, cellular motility and morphology, and ion transport were expanded. The genome of C. roscoffensis will provide a foundation for understanding the genetic and phenotypic diversification and calcification mechanisms of coccolithophores.


2021 ◽  
Author(s):  
Rachel H. R. Stanley ◽  
Thomas Thomas ◽  
Yuan Gao ◽  
Cassandra Gaston ◽  
David Ho ◽  
...  

The Surface Ocean – Lower Atmosphere Study (SOLAS) (http://www.solas-int.org/) is an international research initiative focused on understanding the key biogeochemical-physical interactions and feedbacks between the ocean and atmosphere that are critical elements of climate and global biogeochemical cycles. Following the release of the SOLAS Decadal Science Plan (2015-2025) (Brévière et al., 2016), the Ocean-Atmosphere Interaction Committee (OAIC) was formed as a subcommittee of the Ocean Carbon and Biogeochemistry (OCB) Scientific Steering Committee to coordinate US SOLAS efforts and activities, facilitate interactions among atmospheric and ocean scientists, and strengthen US contributions to international SOLAS. In October 2019, with support from OCB, the OAIC convened an open community workshop, Ocean-Atmosphere Interactions: Scoping directions for new research with the goal of fostering new collaborations and identifying knowledge gaps and high-priority science questions to formulate a US SOLAS Science Plan. Based on presentations and discussions at the workshop, the OAIC and workshop participants have developed this US SOLAS Science Plan. The first part of the workshop and this Science Plan were purposefully designed around the five themes of the SOLAS Decadal Science Plan (2015-2025) (Brévière et al., 2016) to provide a common set of research priorities and ensure a more cohesive US contribution to international SOLAS.


2021 ◽  
Author(s):  
Walker O. Smith Jr.

Abstract. Polar systems are undersampled due to the difficulty of sampling remote and challenging environments; however, these systems are critical components of global biogeochemical cycles. Measurements on primary productivity in specific areas can quantify the input of organic matter to food webs, and so are of critical ecological importance as well. However, long-term measurements using the same methodology are available only for a few polar systems. Primary productivity measurements using 14C-uptake incubations from the Ross Sea, Antarctica, are synthesized, along with chlorophyll concentrations at the same depths and locations. A total of 19 independent cruises were completed, and 449 stations occupied where measurements of primary productivity (each with 7 depths) were completed. The incubations used the same basic simulated in situ methodology for all. Integrated water column productivity for all stations averaged 1.10 ± 1.20 g C m−2 d−1, and the maximum was 13.1 g C m−2 d−1. Annual productivity calculated from the means throughout the growing season equalled 146 g C m−2 yr−1. Mean chlorophyll concentration in the euphotic zone (the 1 % irradiance level) was 2.85 ± 2.68 mg m−3 (maximum concentration was 19.1 mg m−3). Maximum photosynthetic rates at the surface (normalized to chlorophyll) averaged 0.94 ± 0.71 mg C (mg chl)−1 h−1, similar to the maximum rate found in photosynthesis/irradiance measurements. Productivity measurements are consistent with the temporal patterns of biomass found previously, with biomass and productivity peaking in late December; mixed layers were at a minimum at this time as well. Estimates of plankton composition also suggest that pre-January productivity was largely driven by the haptophyte Phaeocystis antarctica, and summer productivity by diatoms. The data set will be useful for a comparison to other Antarctic regions and provide a basis for refined bio-optical models of regional primary productivity.


2021 ◽  
Vol 9 (1) ◽  
pp. 082-093
Author(s):  
Arlette Galván González ◽  
Rocío Pérez y Terrón

Extremophilic microorganisms are organisms capable of proliferating under extreme conditions that are generally detrimental to most life on Earth. They are organisms considered of importance in different areas of research, due to their ability to produce proteins and enzymes under inhospitable conditions. Therefore, in the present work, the information on their participation in the processes of biogeochemical cycles was collected and analyzed in order to demonstrate their ecological importance. Recent studies on the metabolic pathways of the Extremophilic microorganisms and their environment have shown that most of the archaea, some bacteria and cyanobacteria carry out metabolic activities essential for the biogeochemical cycles of sulfur, carbon and nitrogen. Archaea and bacteria being one of the main microorganisms that participate in a variety of processes such as sulfidogenesis, methanogenesis, ANAMMOX (anaerobic ammonium oxidation), among others. This has suggested that Extremophilic microorganisms and extreme ecosystems have a significant impact on global biogeochemical cycles.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2126
Author(s):  
Victoria Turzynski ◽  
Indra Monsees ◽  
Cristina Moraru ◽  
Alexander J. Probst

Viruses are the most abundant biological entities on Earth with an estimate of 1031 viral particles across all ecosystems. Prokaryotic viruses—bacteriophages and archaeal viruses—influence global biogeochemical cycles by shaping microbial communities through predation, through the effect of horizontal gene transfer on the host genome evolution, and through manipulating the host cellular metabolism. Imaging techniques have played an important role in understanding the biology and lifestyle of prokaryotic viruses. Specifically, structure-resolving microscopy methods, for example, transmission electron microscopy, are commonly used for understanding viral morphology, ultrastructure, and host interaction. These methods have been applied mostly to cultivated phage–host pairs. However, recent advances in environmental genomics have demonstrated that the majority of viruses remain uncultivated, and thus microscopically uncharacterized. Although light- and structure-resolving microscopy of viruses from environmental samples is possible, quite often the link between the visualization and the genomic information of uncultivated prokaryotic viruses is missing. In this minireview, we summarize the current state of the art of imaging techniques available for characterizing viruses in environmental samples and discuss potential links between viral imaging and environmental genomics for shedding light on the morphology of uncultivated viruses and their lifestyles in Earth’s ecosystems.


Marine Drugs ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. 576
Author(s):  
Jichen Chen ◽  
Jianchao Yang ◽  
Hong Du ◽  
Muhmmad Aslam ◽  
Wanna Wang ◽  
...  

During the processes of primary and secondary endosymbiosis, different microalgae evolved to synthesis different storage polysaccharides. In stramenopiles, the main storage polysaccharides are β-1,3-glucan, or laminarin, in vacuoles. Currently, laminarin is gaining considerable attention due to its application in the food, cosmetic and pharmaceuticals industries, and also its importance in global biogeochemical cycles (especially in the ocean carbon cycle). In this review, the structures, composition, contents, and bioactivity of laminarin were summarized in different algae. It was shown that the general features of laminarin are species-dependence. Furthermore, the proposed biosynthesis and catabolism pathways of laminarin, functions of key genes, and diel regulation of laminarin were also depicted and comprehensively discussed for the first time. However, the complete pathways, functions of genes, and diel regulatory mechanisms of laminarin require more biomolecular studies. This review provides more useful information and identifies the knowledge gap regarding the future studies of laminarin and its applications.


2021 ◽  
Vol 118 (40) ◽  
pp. e2103511118
Author(s):  
Mojtaba Fakhraee ◽  
Lidya G. Tarhan ◽  
Noah J. Planavsky ◽  
Christopher T. Reinhard

Marine dissolved organic carbon (DOC), the largest pool of reduced carbon in the oceans, plays an important role in the global carbon cycle and contributes to the regulation of atmospheric oxygen and carbon dioxide abundances. Despite its importance in global biogeochemical cycles, the long-term history of the marine DOC reservoir is poorly constrained. Nonetheless, significant changes to the size of the oceanic DOC reservoir through Earth’s history have been commonly invoked to explain changes to ocean chemistry, carbon cycling, and marine ecology. Here, we present a revised view of the evolution of marine DOC concentrations using a mechanistic carbon cycle model that can reproduce DOC concentrations in both oxic and anoxic modern environments. We use this model to demonstrate that the overall size of the marine DOC reservoir has likely undergone very little variation through Earth’s history, despite major changes in the redox state of the ocean–atmosphere system and the nature and efficiency of the biological carbon pump. A relatively static marine DOC reservoir across Earth’s history renders it unlikely that major changes in marine DOC concentrations have been responsible for driving massive repartitioning of surface carbon or the large carbon isotope excursions observed in Earth’s stratigraphic record and casts doubt on previously hypothesized links between marine DOC levels and the emergence and radiation of early animals.


mSystems ◽  
2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Rika E. Anderson

The deep marine subsurface constitutes a massive biosphere that hosts a multitude of archaea, bacteria, and viruses across a diversity of habitats. These microbes play key roles in mediating global biogeochemical cycles, and the marine subsurface is thought to have been among the earliest habitats for life on Earth.


2021 ◽  
Vol 8 ◽  
Author(s):  
Nasrollah Moradi ◽  
Isabell Klawonn ◽  
Morten H. Iversen ◽  
Frank Wenzhöfer ◽  
Hans-Peter Grossart ◽  
...  

Our understanding of the small-scale processes that drive global biogeochemical cycles and the Earth’s climate is dependent on accurate estimations of interfacial diffusive fluxes to and from biologically-active substrates in aquatic environments. In this study, we present a novel model approach for accurate calculations of diffusive fluxes of dissolved gases, nutrients, and solutes from concentration profiles measured across the substrate-water interfaces using microsensors. The model offers a robust computational scheme for automatized determination of the interface position and enables precise calculations of the interfacial diffusive fluxes simultaneously. In contrast to other methods, the new approach is not restricted to any particular substrate geometry, does not require a priori determination of the interface position for the flux calculation, and, thus, reduces the uncertainties in calculated fluxes arising from partly subjective identification of the interface position. In addition, it is robust when applied to measured profiles containing scattered data points and insensitive to reasonable decreases of the spatial resolution of the data points. The latter feature allows for significantly reducing measurement time which is a crucial factor for in situ experiments.


Sign in / Sign up

Export Citation Format

Share Document