scholarly journals Genome Sequences of Two Pseudomonas aeruginosa Isolates with Defects in Type III Secretion System Gene Expression from a Chronic Ankle Wound Infection

Author(s):  
Sardar Karash ◽  
Robert Nordell ◽  
Egon A. Ozer ◽  
Timothy L. Yahr

A common feature of microorganisms that cause chronic infections is a stealthy lifestyle that promotes immune avoidance and host tolerance. During chronic colonization of cystic fibrosis (CF) patients, Pseudomonas aeruginosa acquires numerous adaptations that include reduced expression of some factors, such as motility, O antigen, and the T3SS, and increased expression of other traits, such as biofilm formation.

Author(s):  
Yushan Xia ◽  
Congjuan Xu ◽  
Dan Wang ◽  
Yuding Weng ◽  
Yongxin Jin ◽  
...  

YbeY is a highly conserved RNase in bacteria and plays essential roles in the maturation of 16S rRNA, regulation of small RNAs (sRNAs) and bacterial responses to environmental stresses. Previously, we verified the role of YbeY in rRNA processing and ribosome maturation in Pseudomonas aeruginosa and demonstrated YbeY-mediated regulation of rpoS through a sRNA ReaL. In this study, we demonstrate that mutation of the ybeY gene results in upregulation of the type III secretion system (T3SS) genes as well as downregulation of the type VI secretion system (T6SS) genes and reduction of biofilm formation. By examining the expression of the known sRNAs in P. aeruginosa, we found that mutation of the ybeY gene leads to downregulation of the small RNAs RsmY/Z that control the T3SS, the T6SS and biofilm formation. Further studies revealed that the reduced levels of RsmY/Z are due to upregulation of retS. Taken together, our results reveal the pleiotropic functions of YbeY and provide detailed mechanisms of YbeY-mediated regulation in P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa causes a variety of acute and chronic infections in humans. The type III secretion system (T3SS) plays an important role in acute infection and the type VI secretion system (T6SS) and biofilm formation are associated with chronic infections. Understanding of the mechanisms that control the virulence determinants involved in acute and chronic infections will provide clues for the development of effective treatment strategies. Our results reveal a novel RNase mediated regulation on the T3SS, T6SS and biofilm formation in P. aeruginosa.


2015 ◽  
Vol 197 (16) ◽  
pp. 2664-2674 ◽  
Author(s):  
Peter J. Intile ◽  
Grant J. Balzer ◽  
Matthew C. Wolfgang ◽  
Timothy L. Yahr

ABSTRACTThePseudomonas aeruginosatype III secretion system (T3SS) is a primary virulence factor important for phagocytic avoidance, disruption of host cell signaling, and host cell cytotoxicity. ExsA is the master regulator of T3SS transcription. The expression, synthesis, and activity of ExsA is tightly regulated by both intrinsic and extrinsic factors. Intrinsic regulation consists of the well-characterized ExsECDA partner-switching cascade, while extrinsic factors include global regulators that alterexsAtranscription and/or translation. To identify novel extrinsic regulators of ExsA, we conducted a transposon mutagenesis screen in the absence of intrinsic control. Transposon disruptions within gene PA2840, which encodes a homolog of theEscherichia coliRNA-helicase DeaD, significantly reduced T3SS gene expression. Recent studies indicate thatE. coliDeaD can promote translation by relieving inhibitory secondary structures within target mRNAs. We report here that PA2840, renamed DeaD, stimulates ExsA synthesis at the posttranscriptional level. Genetic experiments demonstrate that the activity of anexsAtranslational fusion is reduced in adeaDmutant. In addition,exsAexpression intransfails to restore T3SS gene expression in adeaDmutant. We hypothesized that DeaD relaxes mRNA secondary structure to promoteexsAtranslation and found that altering the mRNA sequence ofexsAor the nativeexsAShine-Dalgarno sequence relieved the requirement for DeaDin vivo. Finally, we show that purified DeaD promotes ExsA synthesis usingin vitrotranslation assays. Together, these data reveal a novel regulatory mechanism forP. aeruginosaDeaD and add to the complexity of global regulation of T3SS.IMPORTANCEAlthough members of the DEAD box family of RNA helicases are appreciated for their roles in mRNA degradation and ribosome biogenesis, an additional role in gene regulation is now emerging in bacteria. By relaxing secondary structures in mRNAs, DEAD box helicases are now thought to promote translation by enhancing ribosomal recruitment. We identify here an RNA helicase that plays a critical role in promoting ExsA synthesis, the central regulator of thePseudomonas aeruginosatype III secretion system, and provide additional evidence that DEAD box helicases directly stimulate translation of target genes. The finding that DeaD stimulatesexsAtranslation adds to a growing list of transcriptional and posttranscriptional regulatory mechanisms that control type III gene expression.


mBio ◽  
2013 ◽  
Vol 4 (6) ◽  
Author(s):  
Kewei Li ◽  
Chang Xu ◽  
Yongxin Jin ◽  
Ziyu Sun ◽  
Chang Liu ◽  
...  

ABSTRACTDuring initial colonization and chronic infection, pathogenic bacteria encounter distinct host environments. Adjusting gene expression accordingly is essential for the pathogenesis.Pseudomonas aeruginosahas evolved complicated regulatory networks to regulate different sets of virulence factors to facilitate colonization and persistence. The type III secretion system (T3SS) and motility are associated with acute infections, while biofilm formation and the type VI secretion system (T6SS) are associated with chronic persistence. To identify novel regulatory genes required for pathogenesis, we screened aP. aeruginosatransposon (Tn) insertion library and foundsuhBto be an essential gene for the T3SS gene expression. The expression ofsuhBwas upregulated in a mouse acute lung infection model, and loss ofsuhBresulted in avirulence. Suppression of T3SS gene expression in thesuhBmutant is linked to a defective translation of the T3SS master regulator, ExsA. Further studies demonstrated thatsuhBmutation led to the upregulation of GacA and its downstream small RNAs, RsmY and RsmZ, triggering T6SS expression and biofilm formation while inhibiting the T3SS. Our results demonstrate that anin vivo-inducible gene,suhB, reciprocally regulates genes associated with acute and chronic infections and plays an essential role in the pathogenesis ofP. aeruginosa.IMPORTANCEA variety of bacterial pathogens, such asPseudomonas aeruginosa, cause acute and chronic infections in humans. During infections, pathogens produce different sets of virulence genes for colonization, tissue damage, and dissemination and for countering host immune responses. Complex regulatory networks control the delicate tuning of gene expression in response to host environments to enable the survival and growth of invading pathogens. Here we identifiedsuhBas a critical gene for the regulation of virulence factors inP. aeruginosa. The expression ofsuhBwas upregulated during acute infection in an animal model, and mutation ofsuhBrenderedP. aeruginosaavirulent. Moreover, we demonstrate that SuhB is required for the activation of virulence factors associated with acute infections while suppressing virulence factors associated with chronic infections. Our report provides new insights into the multilayered regulatory network of virulence genes inP. aeruginosa.


2017 ◽  
Vol 199 (23) ◽  
Author(s):  
Shubham Chakravarty ◽  
Cameron N. Melton ◽  
Adam Bailin ◽  
Timothy L. Yahr ◽  
Gregory G. Anderson

ABSTRACT Pseudomonas aeruginosa causes numerous acute and chronic opportunistic infections in humans. One of its most formidable weapons is a type III secretion system (T3SS), which injects powerful toxins directly into host cells. The toxins lead to cell dysfunction and, ultimately, cell death. Identification of regulatory pathways that control T3SS gene expression may lead to the discovery of novel therapeutics to treat P. aeruginosa infections. In a previous study, we found that expression of the magnesium transporter gene mgtE inhibits T3SS gene transcription. MgtE-dependent inhibition appeared to interfere with the synthesis or function of the master T3SS transcriptional activator ExsA, although the exact mechanism was unclear. We now demonstrate that mgtE expression acts through the GacAS two-component system to activate rsmY and rsmZ transcription. This event ultimately leads to inhibition of exsA translation. This inhibitory effect is specific to exsA as translation of other genes in the exsCEBA operon is not inhibited by mgtE. Moreover, our data reveal that MgtE acts solely through this pathway to regulate T3SS gene transcription. Our study reveals an important mechanism that may allow P. aeruginosa to fine-tune T3SS activity in response to certain environmental stimuli. IMPORTANCE The type III secretion system (T3SS) is a critical virulence factor utilized by numerous Gram-negative bacteria, including Pseudomonas aeruginosa, to intoxicate and kill host cells. Elucidating T3SS regulatory mechanisms may uncover targets for novel anti-P. aeruginosa therapeutics and provide deeper understanding of bacterial pathogenesis. We previously found that the magnesium transporter MgtE inhibits T3SS gene transcription in P. aeruginosa. In this study, we describe the mechanism of MgtE-dependent inhibition of the T3SS. Our report also illustrates how MgtE might respond to environmental cues, such as magnesium levels, to fine-tune T3SS gene expression.


2015 ◽  
Vol 198 (1) ◽  
pp. 178-186 ◽  
Author(s):  
Claudine Baraquet ◽  
Caroline S. Harwood

ABSTRACTThe transcription factor FleQ fromPseudomonas aeruginosaderepresses expression of genes involved in biofilm formation when intracellular levels of the second messenger cyclic diguanosine monophosphate (c-di-GMP) are high. FleQ also activates transcription of flagellar genes, and the expression of these genes is highest at low intracellular c-di-GMP. FleQ thus plays a central role in mediating the transition between planktonic and biofilm lifestyles ofP. aeruginosa. Previous work showed that FleQ controls expression of thepeloperon for Pel exopolysaccharide biosynthesis by converting from a repressor to an activator upon binding c-di-GMP. To explore the activity of FleQ further, we carried out DNase I footprinting at three additional biofilm gene promoters, those ofpsl,cdrAB, and PA2440. The expression ofcdrAB, encoding a cell surface adhesin, was sufficiently responsive to FleQ to allow us to carry outin vivopromoter assays. The results showed that, similarly to our observations with thepeloperon, FleQ switches from a repressor to an activator ofcdrABgene expression in response to c-di-GMP. From the footprinting data, we identified a FleQ DNA binding consensus sequence. A search for this conserved sequence in bacterial genome sequences led to the identification of FleQ binding sites in the promoters of thesiaABCDoperon, important for cell aggregation, and thebdlAgene, important for biofilm dispersal, inP. aeruginosa. We also identified FleQ binding sites upstream oflapA-like adhesin genes in otherPseudomonasspecies.IMPORTANCEThe transcription factor FleQ is widely distributed inPseudomonasspecies. In all species examined, it is a master regulator of flagellar gene expression. It also regulates diverse genes involved in biofilm formation inP. aeruginosawhen intracellular levels of the second messenger c-di-GMP are high. Unlike flagellar genes, biofilm-associated genes are not always easy to recognize in genome sequences. Here, we identified a consensus DNA binding sequence for FleQ. This allowed us to surveyPseudomonasstrains and find new genes that are likely regulated by FleQ and possibly involved in biofilm formation.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Kayley H. Janssen ◽  
Jodi M. Corley ◽  
Louise Djapgne ◽  
J. T. Cribbs ◽  
Deven Voelker ◽  
...  

ABSTRACT Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen causing skin and soft tissue, respiratory, and bloodstream infections. The type III secretion system (T3SS) is one important virulence factor. Production of the T3SS is controlled by ExsA, a transcription factor that activates expression of the entire T3SS regulon. Global regulators including Vfr, RsmA, and Hfq also contribute to regulation of the T3SS. Vfr is a cAMP-responsive transcription factor that activates exsA transcription. RsmA, an RNA-binding protein, inversely controls expression of the T3SS and the type VI secretion system (T6SS). Hfq is an RNA chaperone that functions by stabilizing small noncoding RNAs (sRNAs) and/or facilitating base pairing between sRNAs and mRNA targets. A previous study identified sRNA 1061, which directly targets the exsA mRNA and likely inhibits ExsA synthesis. In this study, we screened an sRNA expression library and identified sRNA 179 as an Hfq-dependent inhibitor of T3SS gene expression. Further characterization revealed that sRNA 179 inhibits the synthesis of both ExsA and Vfr. The previous finding that RsmA stimulates ExsA and Vfr synthesis suggested that sRNA 179 impacts the Gac/Rsm system. Consistent with that idea, the inhibitory activity of sRNA 179 is suppressed in a mutant lacking rsmY and rsmZ, and sRNA 179 expression stimulates rsmY transcription. RsmY and RsmZ are small noncoding RNAs that sequester RsmA from target mRNAs. Our combined findings show that Hfq and sRNA 179 indirectly regulate ExsA and Vfr synthesis by reducing the available pool of RsmA, leading to reduced expression of the T3SS and cAMP-Vfr regulons. IMPORTANCE Control of gene expression by small noncoding RNA (sRNA) is well documented but underappreciated. Deep sequencing of mRNA preparations from Pseudomonas aeruginosa suggests that >500 sRNAs are generated. Few of those sRNAs have defined roles in gene expression. To address that knowledge gap, we constructed an sRNA expression library and identified sRNA 179 as a regulator of the type III secretion system (T3SS) and the cAMP-Vfr regulons. The T3SS- and cAMP-Vfr-controlled genes are critical virulence factors. Increased understanding of the signals and regulatory mechanisms that control these important factors will enhance our understanding of disease progression and reveal potential approaches for therapeutic intervention.


2019 ◽  
Vol 201 (14) ◽  
Author(s):  
Emily A. Williams McMackin ◽  
Anne E. Marsden ◽  
Timothy L. Yahr

ABSTRACT Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen capable of causing severe disease in immunocompromised individuals. A major P. aeruginosa virulence factor is the type III secretion system (T3SS). The T3SS is used to translocate effector proteins into host cells, causing cytotoxicity. The T3SS is under the transcriptional control of the master regulator ExsA. ExsA is encoded in the exsCEBA operon and autoregulates transcription via the PexsC promoter. There is also a Vfr-dependent promoter (PexsA) located in the intergenic region between exsB and exsA. A previous chromatin immunoprecipitation (ChIP)-on-chip experiment identified strong binding signatures for MvaT and MvaU in the intergenic region containing the PexsA promoter. MvaT and MvaU are DNA-binding histone-like nucleoid-structuring proteins that can repress gene expression. As predicted from the previous ChIP data, purified MvaT specifically bound to the PexsA promoter region in electrophoretic mobility shift assays. Whereas disruption of mvaT or mvaU by either transposon insertion or clustered regularly interspaced short palindromic repeat interference (CRISPRi) derepressed PexsA promoter activity and T3SS gene expression, overexpression of MvaT or MvaU inhibited PexsA promoter activity. Disruption of mvaT, however, did not suppress the Vfr requirement for PexsA promoter activity. Mutated MvaT/MvaU defective in transcriptional silencing exhibited dominant negative activity, resulting in a significant increase in PexsA promoter activity. Because no effect of MvaT or MvaU on Vfr expression was detected, we propose a model in which the primary effect of MvaT/MvaU on T3SS gene expression is through direct silencing of the PexsA promoter. IMPORTANCE Global regulatory systems play a prominent role in controlling the P. aeruginosa T3SS and include the Gac/RsmA, c-di-GMP, and Vfr-cAMP signaling pathways. Many of these pathways appear to directly or indirectly influence exsA transcription or translation. In this study, the histone-like proteins MvaT and MvaU are added to the growing list of global regulators that control the T3SS. MvaT and MvaU bind AT-rich regions in the genome and silence xenogeneic genes, including pathogenicity islands. The T3SS gene cluster has been horizontally transmitted among many Gram-negative pathogens. Control by MvaT/MvaU may reflect a residual effect that has persisted since the initial acquisition of the gene cluster, subsequently imposing a requirement for active regulatory mechanisms to override MvaT/MvaU-mediated silencing.


2012 ◽  
Vol 78 (15) ◽  
pp. 5060-5069 ◽  
Author(s):  
Morten T. Rybtke ◽  
Bradley R. Borlee ◽  
Keiji Murakami ◽  
Yasuhiko Irie ◽  
Morten Hentzer ◽  
...  

ABSTRACTThe increased tolerance toward the host immune system and antibiotics displayed by biofilm-formingPseudomonas aeruginosaand other bacteria in chronic infections such as cystic fibrosis bronchopneumonia is of major concern. Targeting of biofilm formation is believed to be a key aspect in the development of novel antipathogenic drugs that can augment the effect of classic antibiotics by decreasing antimicrobial tolerance. The second messenger cyclic di-GMP is a positive regulator of biofilm formation, and cyclic di-GMP signaling is now regarded as a potential target for the development of antipathogenic compounds. Here we describe the development of fluorescent monitors that can gauge the cellular level of cyclic di-GMP inP. aeruginosa. We have created cyclic di-GMP level reporters by transcriptionally fusing the cyclic di-GMP-responsivecdrApromoter to genes encoding green fluorescent protein. We show that the reporter constructs give a fluorescent readout of the intracellular level of cyclic di-GMP inP. aeruginosastrains with different levels of cyclic di-GMP. Furthermore, we show that the reporters are able to detect increased turnover of cyclic di-GMP mediated by treatment ofP. aeruginosawith the phosphodiesterase inducer nitric oxide. Considering that biofilm formation is a necessity for the subsequent development of a chronic infection and therefore a pathogenicity trait, the reporters display a significant potential for use in the identification of novel antipathogenic compounds targeting cyclic di-GMP signaling, as well as for use in research aiming at understanding the biofilm biology ofP. aeruginosa.


2011 ◽  
Vol 56 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Akihiro Yamazaki ◽  
Jin Li ◽  
Quan Zeng ◽  
Devanshi Khokhani ◽  
William C. Hutchins ◽  
...  

ABSTRACTAntibiotic therapy is the most commonly used strategy to control pathogenic infections; however, it has contributed to the generation of antibiotic-resistant bacteria. To circumvent this emerging problem, we are searching for compounds that target bacterial virulence factors rather than their viability.Pseudomonas aeruginosa, an opportunistic human pathogen, possesses a type III secretion system (T3SS) as one of the major virulence factors by which it secretes and translocates T3 effector proteins into human host cells. The fact that this human pathogen also is able to infect several plant species led us to screen a library of phenolic compounds involved in plant defense signaling and their derivatives for novel T3 inhibitors. Promoter activity screening ofexoS, which encodes a T3-secreted toxin, identified two T3 inhibitors and two T3 inducers ofP. aeruginosaPAO1. These compounds alterexoStranscription by affecting the expression levels of the regulatory small RNAs RsmY and RsmZ. These two small RNAs are known to control the activity of carbon storage regulator RsmA, which is responsible for the regulation of the key T3SS regulator ExsA. As RsmY and RsmZ are the only targets directly regulated by GacA, our results suggest that these phenolic compounds affect the expression ofexoSthrough the GacSA-RsmYZ-RsmA-ExsA regulatory pathway.


2019 ◽  
Vol 201 (22) ◽  
Author(s):  
Josh S. Sharp ◽  
Arne Rietsch ◽  
Simon L. Dove

ABSTRACT Pseudomonas aeruginosa is an important opportunistic pathogen that employs a type III secretion system (T3SS) to inject effector proteins into host cells. Using a protein depletion system, we show that the endoribonuclease RNase E positively regulates expression of the T3SS genes. We also present evidence that RNase E antagonizes the expression of genes of the type VI secretion system and limits biofilm production in P. aeruginosa. Thus, RNase E, which is thought to be the principal endoribonuclease involved in the initiation of RNA degradation in P. aeruginosa, plays a key role in controlling the production of factors involved in both acute and chronic stages of infection. Although the posttranscriptional regulator RsmA is also known to positively regulate expression of the T3SS genes, we find that RNase E does not appreciably influence the abundance of RsmA in P. aeruginosa. Moreover, we show that RNase E still exerts its effects on T3SS gene expression in cells lacking all four of the key small regulatory RNAs that function by sequestering RsmA. IMPORTANCE The type III secretion system (T3SS) is a protein complex produced by many Gram-negative pathogens. It is capable of injecting effector proteins into host cells that can manipulate cell metabolism and have toxic effects. Understanding how the T3SS is regulated is important in understanding the pathogenesis of bacteria with such systems. Here, we show that RNase E, which is typically thought of as a global regulator of RNA stability, plays a role in regulating the T3SS in Pseudomonas aeruginosa. Depleting RNase E results in the loss of T3SS gene expression as well as a concomitant increase in biofilm formation. These observations are reminiscent of the phenotypes associated with the loss of activity of the posttranscriptional regulator RsmA. However, RNase E-mediated regulation of these systems does not involve changes in the abundance of RsmA and is independent of the known small regulatory RNAs that modulate RsmA activity.


Sign in / Sign up

Export Citation Format

Share Document