Crustal fragments underlain by high-grade rocks represent a challenge to plate reconstructions, and integrated mapping, geochronology, and geochemistry enable the unravelling of the temporal and spatial history of exotic crustal blocks. The Quinebaug-Marlboro belt (QMB) is an enigmatic fragment on the trailing edge of the peri-Gondwanan Ganderian margin of southeastern New England. SHRIMP U-Pb geochronology and geochemistry indicate the presence of Ediacaran to Cambrian metamorphosed volcanic and intrusive rocks dated for the first time between ca. 540–500 Ma. The entire belt may preserve a cryptic, internal stratigraphy that is truncated by subsequent faulting. Detrital zircons from metapelite in the overlying Nashoba and Tatnic Hill Formations indicate deposition between ca. 485–435 Ma, with provenance from the underlying QMB or Ganderian crust. The Preston Gabbro (418 ± 3 Ma) provides a minimum age for the QMB. Mafic rocks are tholeiitic with trace elements that resemble arc and E-MORB sources, and samples with negative Nb-Ta anomalies are similar to arc-like rocks, but others show no negative Nb-Ta anomaly and are similar to rocks from E-MORB to OIB or backarc settings. Geochemistry points to a mixture of sources that include both mantle and continental crust. Metamorphic zircon, monazite, and titanite ages range from 400 to 305 Ma and intrusion of granitoids and migmatization occurred between 410 and 325 Ma. Age and chemistry support correlations with the Ellsworth terrane in Maine and the Penobscot arc and backarc system in Maritime Canada. The arc-rifting zone where the Mariana arc and the Mariana backarc basin converge is a possible modern analog.