Algebraic Ricci solitons on metric Lie groups with zero Schouten–Weyl tensor

2017 ◽  
Vol 95 (1) ◽  
pp. 62-64
Author(s):  
P. N. Klepikov ◽  
E. D. Rodionov
Author(s):  
Pavel Nikolaevich Klepikov ◽  
◽  
Evgeny Dmitrievich Rodionov ◽  
Olesya Pavlovna Khromova ◽  
◽  
...  

2016 ◽  
Vol 290 (8-9) ◽  
pp. 1381-1405 ◽  
Author(s):  
Thomas H. Wears

Author(s):  
D.V. Vylegzhanin ◽  
P.N. Klepikov ◽  
E.D. Rodionov ◽  
O.P. Khromova

Metric connections with vector torsion, or semisymmetric connections, were first discovered by E. Cartan. They are a natural generalization of the Levi-Civita connection. The properties of such connections and the basic tensor fields were investigated by I. Agrikola, K. Yano, and other mathematicians. Ricci solitons are the solution to the Ricci flow and a natural generalization of Einstein's metrics. In the general case, they were investigated by many mathematicians, which was reflected in the reviews by H.-D. Cao, R.M. Aroyo — R. Lafuente. This question is best studied in the case of trivial Ricci solitons, or Einstein metrics, as well as the homogeneous Riemannian case. This paper investigates semisymmetric connections on three-dimensional Lie groups with the metric of an invariant Ricci soliton. A classification of these connections on three-dimensional non-unimodularLie groups with the left-invariant Riemannian metric of the Ricci soliton is obtained. It is proved that there are nontrivial invariant semisymmetric connections in this case. In addition, it is shown that there are nontrivial invariant Ricci solitons.


Sign in / Sign up

Export Citation Format

Share Document