What is the impact of head movement on automated CT perfusion mismatch evaluation in acute ischemic stroke?

2021 ◽  
pp. neurintsurg-2021-017510
Author(s):  
Arne Potreck ◽  
Fatih Seker ◽  
Matthias Anthony Mutke ◽  
Charlotte Sabine Weyland ◽  
Christian Herweh ◽  
...  

ObjectivesAutomated CT perfusion mismatch assessment is an established treatment decision tool in acute ischemic stroke. However, the reliability of this method in patients with head motion is unclear. We therefore sought to evaluate the influence of head movement on automated CT perfusion mismatch evaluation.MethodsUsing a realistic CT brain-perfusion-phantom, 7 perfusion mismatch scenarios were simulated within the left middle cerebral artery territory. Real CT noise and artificial head movement were added. Thereafter, ischemic core, penumbra volumes and mismatch ratios were evaluated using an automated mismatch analysis software (RAPID, iSchemaView) and compared with ground truth simulated values.ResultsWhile CT scanner noise alone had only a minor impact on mismatch evaluation, a tendency towards smaller infarct core estimates (mean difference of −5.3 (−14 to 3.5) mL for subtle head movement and −7.0 (−14.7 to 0.7) mL for strong head movement), larger penumbral estimates (+9.9 (−25 to 44) mL and +35 (−14 to 85) mL, respectively) and consequently larger mismatch ratios (+0.8 (−1.5 to 3.0) for subtle head movement and +1.9 (−1.3 to 5.1) for strong head movement) were noted in dependence of patient head movement.ConclusionsMotion during CT perfusion acquisition influences automated mismatch evaluation. Potentially treatment-relevant changes in mismatch classifications in dependence of head movement were observed and occurred in favor of mechanical thrombectomy.

2021 ◽  
pp. 1-12
Author(s):  
Manuel Pérez-Pelegrí ◽  
Carles Biarnés ◽  
Santiago Thió-Henestrosa ◽  
Sebastià Remollo ◽  
Alfredo Gimeno ◽  
...  

BACKGROUND AND OBJECTIVE: Estimates of parameters used to select patients for endovascular thrombectomy (EVT) for acute ischemic stroke differ among software packages for automated computed tomography (CT) perfusion analysis. To determine impact of these differences in decision making, we analyzed intra-observer and inter-observer agreement in recommendations about whether to perform EVT based on perfusion maps from 4 packages. METHODS: Perfusion CT datasets from 63 consecutive patients with suspected acute ischemic stroke were retrospectively postprocessed with 4 packages of Minerva, RAPID, Olea, and IntelliSpace Portal (ISP). We used Pearson correlation coefficients and Bland-Altman analysis to compare volumes of infarct core, penumbra, and mismatch calculated by Minerva and RAPID. We used kappa analysis to assess agreement among decisions of 3 radiologists about whether to recommend EVT based on maps generated by 4 packages. RESULTS: We found significant differences between using Minerva and RAPID to estimate penumbra (67.39±41.37mL vs. 78.35±45.38 mL, p <  0.001) and mismatch (48.41±32.03 vs. 61.27±32.73mL, p <  0.001), but not of infarct core (p = 0.230). Pearson correlation coefficients were 0.94 (95%CI:0.90–0.96) for infarct core, 0.87 (95%CI:0.79–0.91) for penumbra, and 0.72 (95%CI:0.57–0.83) for mismatch volumes (p <  0.001). Limits of agreements were (–21.22–25.02) for infarct core volumes, (–54.79–32.88) for penumbra volumes, and (–60.16–34.45) for mismatch volumes. Final agreement for EVT decision-making was substantial between Minerva vs. RAPID (k = 0.722), Minerva vs. Olea (k = 0.761), and RAPID vs. Olea (k = 0.782), but moderate for ISP vs. the other three. CONCLUSIONS: Despite quantitative differences in estimates of infarct core, penumbra, and mismatch using 4 software packages, their impact on radiologists’ decisions about EVT is relatively small.


2020 ◽  
pp. 028418512098177
Author(s):  
Yu Lin ◽  
Nannan Kang ◽  
Jianghe Kang ◽  
Shaomao Lv ◽  
Jinan Wang

Background Color-coded multiphase computed tomography angiography (mCTA) can provide time-variant blood flow information of collateral circulation for acute ischemic stroke (AIS). Purpose To compare the predictive values of color-coded mCTA, conventional mCTA, and CT perfusion (CTP) for the clinical outcomes of patients with AIS. Material and Methods Consecutive patients with anterior circulation AIS were retrospectively reviewed at our center. Baseline collateral scores of color-coded mCTA and conventional mCTA were assessed by a 6-point scale. The reliabilities between junior and senior observers were assessed by weighted Kappa coefficients. Receiver operating characteristic (ROC) curves and multivariate logistic regression model were applied to evaluate the predictive capabilities of color-coded mCTA and conventional mCTA scores, and CTP parameters (hypoperfusion and infarct core volume) for a favorable outcome of AIS. Results A total of 138 patients (including 70 cases of good outcomes) were included in our study. Patients with favorable prognoses were correlated with better collateral circulations on both color-coded and conventional mCTA, and smaller hypoperfusion and infarct core volume (all P < 0.05) on CTP. ROC curves revealed no significant difference between the predictive capability of color-coded and conventional mCTA ( P = 0.427). The predictive value of CTP parameters tended to be inferior to that of color-coded mCTA score (all P < 0.001). Both junior and senior observers had consistently excellent performances (κ = 0.89) when analyzing color-coded mCTA maps. Conclusion Color-coded mCTA provides prognostic information of patients with AIS equivalent to or better than that of conventional mCTA and CTP. Junior radiologists can reach high diagnostic accuracy when interpreting color-coded mCTA images.


Author(s):  
Marta Olive‐Gadea ◽  
Manuel Requena ◽  
Facundo Diaz ◽  
Alvaro Garcia‐Tornel ◽  
Marta Rubiera ◽  
...  

Introduction : In acute ischemic stroke patients, current guidelines recommend noninvasive vascular imaging to identify intracranial vessel occlusions (VO) that may benefit from endovascular treatment (EVT). However, VO can be missed in CT angiography (CTA) readings. We aim to evaluate the impact of consistently including CT perfusion (CTP) in admission stroke imaging protocols on VO diagnosis and EVT rates. Methods : We included patients with a suspected acute ischemic stroke that underwent urgent non‐contrast CT, CTA and CTP from April to October 2020. Hypoperfusion areas defined by Tmax>6s delay (RAPID software), congruent with the clinical symptoms and a vascular territory, were considered due to a VO (CTP‐VO). Cases in which mechanical thrombectomy was performed were defined as therapeutically relevant VO (EVT‐VO). For patients that received EVT, site of VO according to digital subtraction angiography was recorded. Two experienced neuroradiologists blinded to CTP but not to clinical symptoms, retrospectively evaluated NCCT and CTA to identify intracranial VO (CTA‐VO). We analyzed CTA‐VO sensitivity and specificity at detecting CTP‐VO and EVT‐VO respecitvely. We performed a logistic regression to test the association of Tmax>6s volumes with CTA‐VO identification and indication of EVT. Results : Of the 338 patients included in the analysis, 157 (46.5%) presented a CTP‐VO, (median Tmax>6s: 73 [29‐127] ml). CTA‐VO was identified in 83 (24.5%) of the cases. Overall CTA‐VO sensitivity for the detection of CTP‐VO was 50.3% and specificity was 97.8%. Higher hypoperfusion volume was associated with an increased CTA‐VO detection, with an odds ratio of 1.03 (95% confidence interval 1.02‐1.04) (figure). DSA was indicated in 107 patients; in 4 of them no EVT was attempted due to recanalization or a too distal VO in the first angiographic run. EVT was performed in 103 patients (30.5%. Tmax>6s: 102 [63‐160] ml), representing 65.6% of all CTP‐VO. Overall CTA‐VO sensitivity for the detection of EVT‐VO was 69.9%. The CTA‐VO sensitivity for detecting patients with indication of EVT according to clinical guidelines was as follows: 91.7% for ICA occlusions and 84.4% for M1‐MCA occlusions. For all other occlusion sites that received EVT, the CTA‐VO sensitivity was 36.1%. The overall specificity was 95.3%. Among patients who received EVT, CTA‐VO was not detected in 31 cases, resulting in a false negative rate of 30.1%. False negative CTA‐VO cases had lower Tmax>6s volumes (69[46‐99.5] vs 126[84‐169.5]ml, p<0.001) and lower NIHSS (13[8.5‐16] vs 17[14‐21], p<0.001). Conclusions : Systematically including CTP perfusion in the acute stroke admission imaging protocols may increase the diagnosis of VO and rate of EVT.


Stroke ◽  
2012 ◽  
Vol 43 (suppl_1) ◽  
Author(s):  
Bruce C Campbell ◽  
Søren Christensen ◽  
Christopher R Levi ◽  
Patricia M Desmond ◽  
Geoffrey A Donnan ◽  
...  

Background and purpose: CT-perfusion (CTP) is widely and rapidly accessible for imaging acute ischemic stroke. However, there has been limited validation of CTP parameters against the more intensively studied MRI perfusion-diffusion mismatch paradigm. We tested the correspondence of CTP with contemporaneous perfusion-diffusion MRI. Methods: Acute ischemic stroke patients <6hr after onset had CTP and perfusion-diffusion MRI within 1hr, before reperfusion therapies. Relative cerebral blood flow (relCBF) and time-to-peak of the deconvolved tissue-residue-function (Tmax) were calculated (standard singular value decomposition deconvolution). The diffusion lesion was registered to the CTP slabs and manually outlined to its maximal visual extent. CT-infarct core was defined as relCBF<31% contralateral mean as previously published using this software. The volumetric accuracy of relCBF core compared to the diffusion lesion was tested in isolation, but also when restricted to pixels with relative time-to-peak (TTP) >4sec, to reduce artifactual false positive low CBF (eg in leukoaraiosis). The MR Tmax>6sec perfusion lesion (previously validated to define penumbral tissue at risk of infarction) was automatically segmented and registered to the CTP slabs. Receiver operating characteristic (ROC) analysis determined the optimal CT-Tmax threshold to match MR-Tmax>6sec, confidence intervals generated by bootstrapping. Agreement of these CT parameters with MR perfusion-diffusion mismatch on co-registered slabs was assessed (mismatch ratio >1.2, absolute mismatch>10mL, infarct core<70mL). Results: In analysis of 98 CTP slabs (54 patients, median onset to CT 190min, median CT to MR 30min), volumetric agreement with the diffusion lesion was substantially improved by constraining relCBF<31% within the automated TTP perfusion lesion ROI (median magnitude of volume difference 9.0mL vs unconstrained 13.9mL, p<0.001). ROC analysis demonstrated the best CT-Tmax threshold to match MR-Tmax>6sec was 6.2sec (95% confidence interval 5.6-7.3sec, ie not significantly different to 6sec), sensitivity 91%, specificity 70%, AUC 0.87. Using CT-Tmax>6s “penumbra” and relCBF<31% (restricted to TTP>4s) “core”, volumetric agreement was sufficient for 90% concordance between CT and MRI-based mismatch status (kappa 0.80). Conclusions: Automated CTP mismatch classification using relCBF and Tmax is similar to perfusion-diffusion MRI. CTP may allow more widespread application of the “mismatch” paradigm in clinical practice and trials.


2021 ◽  
Vol 12 ◽  
Author(s):  
Andrew Bivard ◽  
Christopher Levi ◽  
Longting Lin ◽  
Xin Cheng ◽  
Richard Aviv ◽  
...  

In the present study we sought to measure the relative statistical value of various multimodal CT protocols at identifying treatment responsiveness in patients being considered for thrombolysis. We used a prospectively collected cohort of acute ischemic stroke patients being assessed for IV-alteplase, who had CT-perfusion (CTP) and CT-angiography (CTA) before a treatment decision. Linear regression and receiver operator characteristic curve analysis were performed to measure the prognostic value of models incorporating each imaging modality. One thousand five hundred and sixty-two sub-4.5 h ischemic stroke patients were included in this study. A model including clinical variables, alteplase treatment, and NCCT ASPECTS was weak (R2 0.067, P &lt; 0.001, AUC 0.605) at predicting 90 day mRS. A second model, including dynamic CTA variables (collateral grade, occlusion severity) showed better predictive accuracy for patient outcome (R2 0.381, P &lt; 0.001, AUC 0.781). A third model incorporating CTP variables showed very high predictive accuracy (R2 0.488, P &lt; 0.001, AUC 0.899). Combining all three imaging modalities variables also showed good predictive accuracy for outcome but did not improve on the CTP model (R2 0.439, P &lt; 0.001, AUC 0.825). CT perfusion predicts patient outcomes from alteplase therapy more accurately than models incorporating NCCT and/or CT angiography. This data has implications for artificial intelligence or machine learning models.


2020 ◽  
Vol 132 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Neil Haranhalli ◽  
Nnenna Mbabuike ◽  
Sanjeet S. Grewal ◽  
Tasneem F. Hasan ◽  
Michael G. Heckman ◽  
...  

OBJECTIVEThe role of CT perfusion (CTP) in the management of patients with acute ischemic stroke (AIS) remains a matter of debate. The primary aim of this study was to evaluate the correlation between the areas of infarction and penumbra on CTP scans and functional outcome in patients with AIS.METHODSThis was a retrospective review of 100 consecutively treated patients with acute anterior circulation ischemic stroke who underwent CT angiography (CTA) and CTP at admission between February 2011 and October 2014. On CTP, the volume of ischemic core and penumbra was measured using the Alberta Stroke Program Early CT Score (ASPECTS). CTA findings were also noted, including the site of occlusion and regional leptomeningeal collateral (rLMC) score. Functional outcome was defined by modified Rankin Scale (mRS) score obtained at discharge. Associations of CTP and CTA parameters with mRS scores at discharge were assessed using multivariable proportional odds logistic regression models.RESULTSThe median age was 67 years (range 19–95 years), and the median NIH Stroke Scale score was 16 (range 2–35). In a multivariable analysis adjusting for potential confounding variables, having an infarct on CTP scans in the following regions was associated with a worse mRS score at discharge: insula ribbon (p = 0.043), perisylvian fissure (p < 0.001), motor strip (p = 0.007), M2 (p < 0.001), and M5 (p = 0.023). A worse mRS score at discharge was more common in patients with a greater volume of infarct core (p = 0.024) and less common in patients with a greater rLMC score (p = 0.004).CONCLUSIONSThe results of this study provide evidence that several CTP parameters are independent predictors of functional outcome in patients with AIS and have potential to identify those patients most likely to benefit from reperfusion therapy in the treatment of AIS.


2019 ◽  
Vol 8 (2-6) ◽  
pp. 116-122
Author(s):  
Ameer E. Hassan ◽  
Hafsah Shamim ◽  
Haralabos Zacharatos ◽  
Saqib A. Chaudhry ◽  
Christina Sanchez ◽  
...  

Background: Studies have shown a lack of agreement of computed tomography perfusion (CTP) in the selection of acute ischemic stroke (AIS) patients for endovascular treatment. Purpose: To demonstrate whether non-contrast computed tomography (CT) within 8 h of symptom onset is comparable to CTP imaging. Methods: Prospective study of consecutive anterior circulation AIS patients with a National Institute of Health Stroke Scale (NIHSS) score > 7 presenting within 8 h of symptom onset with endovascular treatment. All patients had non-contrast CT, CT angiography, and CTP. The neuro-interventionalist was blinded to the results of the CTP and based the treatment decision using the Alberta Stroke Program Early CT score (ASPECTS). Baseline demographics, co-morbidities, and baseline NIHSS scores were collected. Outcomes were modified Rankin scale (mRS) score at discharge and in-hospital mortality. Good outcomes were defined as a mRS score of 0–2. Results: 283 AIS patients were screened for the trial, and 119 were enrolled. The remaining patients were excluded for: posterior circulation stroke, no CTP performed, could not obtain consent, and NIHSS score < 7. Mean ­NIHSS score at admission was 16.8 ± 3, and mean ASPECTS was 8.4 ± 1.4. There was no statistically significant correlation with CTP penumbra and good outcomes: 50 versus 47.8% with no penumbra present (p = 0.85). In patients without evidence of CTP penumbra, there was 22.5% mortality compared to 22.1% mortality in patients with a CTP penumbra. If ASPECTS ≥7, 64.6% had good outcome versus 13.3% if ASPECTS < 7 (p < 0.001). Patients with an ASPECTS ≥7 had 10% mortality versus 51.4% in patients with an ASPECTS < 7 (p < 0.001). Conclusions: CTP penumbra did not identify patients who would benefit from endovascular treatment when patients were selected with non-contrast CT ASPECTS ≥7. There is no correlation of CTP penumbra with good outcomes or mortality. Larger prospective trials are warranted to justify the use of CTP within 6 h of symptom onset.


2014 ◽  
Vol 5 (1) ◽  
pp. 67-78 ◽  
Author(s):  
Fahmi Fahmi ◽  
Henk Marquering ◽  
Geert Streekstra ◽  
Ludo Beenen ◽  
Natasja Janssen ◽  
...  

2017 ◽  
Vol 27 (6) ◽  
pp. 602-606 ◽  
Author(s):  
Xuya Huang ◽  
Dheeraj Kalladka ◽  
Bharath Kumar Cheripelli ◽  
Fiona Catherine Moreton ◽  
Keith W. Muir

Sign in / Sign up

Export Citation Format

Share Document