Abstract 1122‐000034: Systematic CT‐Perfusion acquisition in All Suspected Stroke Patients Increases Vascular Occlusion Detection and Thrombectomy Rates

Author(s):  
Marta Olive‐Gadea ◽  
Manuel Requena ◽  
Facundo Diaz ◽  
Alvaro Garcia‐Tornel ◽  
Marta Rubiera ◽  
...  

Introduction : In acute ischemic stroke patients, current guidelines recommend noninvasive vascular imaging to identify intracranial vessel occlusions (VO) that may benefit from endovascular treatment (EVT). However, VO can be missed in CT angiography (CTA) readings. We aim to evaluate the impact of consistently including CT perfusion (CTP) in admission stroke imaging protocols on VO diagnosis and EVT rates. Methods : We included patients with a suspected acute ischemic stroke that underwent urgent non‐contrast CT, CTA and CTP from April to October 2020. Hypoperfusion areas defined by Tmax>6s delay (RAPID software), congruent with the clinical symptoms and a vascular territory, were considered due to a VO (CTP‐VO). Cases in which mechanical thrombectomy was performed were defined as therapeutically relevant VO (EVT‐VO). For patients that received EVT, site of VO according to digital subtraction angiography was recorded. Two experienced neuroradiologists blinded to CTP but not to clinical symptoms, retrospectively evaluated NCCT and CTA to identify intracranial VO (CTA‐VO). We analyzed CTA‐VO sensitivity and specificity at detecting CTP‐VO and EVT‐VO respecitvely. We performed a logistic regression to test the association of Tmax>6s volumes with CTA‐VO identification and indication of EVT. Results : Of the 338 patients included in the analysis, 157 (46.5%) presented a CTP‐VO, (median Tmax>6s: 73 [29‐127] ml). CTA‐VO was identified in 83 (24.5%) of the cases. Overall CTA‐VO sensitivity for the detection of CTP‐VO was 50.3% and specificity was 97.8%. Higher hypoperfusion volume was associated with an increased CTA‐VO detection, with an odds ratio of 1.03 (95% confidence interval 1.02‐1.04) (figure). DSA was indicated in 107 patients; in 4 of them no EVT was attempted due to recanalization or a too distal VO in the first angiographic run. EVT was performed in 103 patients (30.5%. Tmax>6s: 102 [63‐160] ml), representing 65.6% of all CTP‐VO. Overall CTA‐VO sensitivity for the detection of EVT‐VO was 69.9%. The CTA‐VO sensitivity for detecting patients with indication of EVT according to clinical guidelines was as follows: 91.7% for ICA occlusions and 84.4% for M1‐MCA occlusions. For all other occlusion sites that received EVT, the CTA‐VO sensitivity was 36.1%. The overall specificity was 95.3%. Among patients who received EVT, CTA‐VO was not detected in 31 cases, resulting in a false negative rate of 30.1%. False negative CTA‐VO cases had lower Tmax>6s volumes (69[46‐99.5] vs 126[84‐169.5]ml, p<0.001) and lower NIHSS (13[8.5‐16] vs 17[14‐21], p<0.001). Conclusions : Systematically including CTP perfusion in the acute stroke admission imaging protocols may increase the diagnosis of VO and rate of EVT.

2021 ◽  
pp. neurintsurg-2021-018241
Author(s):  
Marta Olive-Gadea ◽  
Manuel Requena ◽  
Facundo Diaz ◽  
Sandra Boned ◽  
Alvaro Garcia-Tornel ◽  
...  

BackgroundIn patients with stroke, current guidelines recommend non-invasive vascular imaging to identify intracranial vessel occlusions (VO) that may benefit from endovascular treatment (EVT). However, VO can be missed in CT angiography (CTA) readings. We aim to evaluate the impact of consistently including CT perfusion (CTP) in admission stroke imaging protocols.MethodsFrom April to October 2020 all patients admitted with a suspected acute ischemic stroke underwent urgent non-contrast CT, CTA and CTP and were treated accordingly. Hypoperfusion areas defined by time-to-maximum of the tissue residue function (Tmax) >6 s, congruent with the clinical symptoms and a vascular territory, were considered VO (CTP-VO). In addition, two experienced neuroradiologists blinded to CTP but not to clinical symptoms retrospectively evaluated non-contrast CT and CTA to identify intracranial VO (CTA-VO).ResultsOf the 338 patients included in the analysis, 157 (46.5%) presented with CTP-VO (median Tmax >6s: 73 (29–127) mL). CTA-VO was identified in 83 (24.5%) of the cases. Overall CTA-VO sensitivity for the detection of CTP-VO was 50.3% and specificity was 97.8%. Higher hypoperfusion volume was associated with increased CTA-VO detection (OR 1.03; 95% CI 1.02 to 1.04). EVT was performed in 103 patients (30.5%; Tmax >6s: 102 (63–160) mL), representing 65.6% of all CTP-VO. Overall CTA-VO sensitivity for the detection of EVT-VO was 69.9% and specificity was 95.3%. Among patients who received EVT, the rate of false negative CTA-VO was 30.1% (Tmax >6s: 69 (46–99.5) mL).ConclusionSystematically including CTP in acute stroke admission imaging protocols may increase the diagnosis of VO and rate of EVT.


US Neurology ◽  
2010 ◽  
Vol 06 (01) ◽  
pp. 50 ◽  
Author(s):  
Sachin Rastogi ◽  
David S Liebeskind ◽  
◽  

Stroke is the third leading cause of death in the US, affecting 795,000 individuals annually. Currently, only a small percentage of acute stroke patients receive thrombolytic treatment. A significant limitation is the current use of strict time criteria in the decision to treat. As there are significant interindividual variations in response to an acute vascular occlusion, the goal of modern imaging such as multimodal computed tomography (CT) is to rapidly identify acute ischemic stroke patients and determine which patients are likely to benefit from treatment based on tissue perfusion status rather than time of presentation alone. Multimodal CT consists of a non-contrast head CT, CT angiogram (CTA) of the head and neck, and CT perfusion (CTP). The non-contrast head CT allows rapid triage of a patient with hemorrhagic versus ischemic stroke. The CTA allows identification of the site of vascular pathology with similar quality to digital subtraction angiography. The CTP scan allows for determination of the infarct core and surrounding ischemic penumbra, which remains at risk for infarction if perfusion is not restored. This allows the potential to prospectively treat only those patients likely to benefit from thrombolysis while protecting those patients unlikely to benefit from the risks associated with treatment.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Nicolle W Davis ◽  
Meghan Bailey ◽  
Natalie Buchwald ◽  
Amreen Farooqui ◽  
Anna Khanna

Background/Objective: There is growing importance on discovering factors that delay time to intervention for acute ischemic stroke (AIS) patients, as rapid intervention remains essential for better patient outcomes. The management of these patients involves a multidisciplinary effort and quality improvement initiatives to safely increase treatment with intravenous thrombolytic (IV tPa). The objective of this pilot is to evaluate factors of acute stroke care in the emergency department (ED) and the impact they have on IV tPa administration. Methods: A sample of 89 acute ischemic stroke patients that received IV tPa from a single academic medical institution was selected for retrospective analysis. System characteristics (presence of a stroke nurse and time of day) and patient characteristics (mode of arrival and National Institutes of Health Stroke Scale score (NIHSS) on arrival) were analyzed using descriptive statistics and multiple regression to address the study question. Results: The mean door to needle time is 53.74 minutes ( + 38.06) with 74.2% of patients arriving to the ED via emergency medical services (EMS) and 25.8% having a stroke nurse present during IV tPa administration. Mode of arrival ( p = .001) and having a stroke nurse present ( p = .022) are significant predictors of door to needle time in the emergency department (ED). Conclusion: While many factors can influence door to needle times in the ED, we did not find NIHSS on arrival or time of day to be significant factors. Patients arriving to the ED by personal vehicle will have a significant delay in IV tPa administration, therefore emphasizing the importance of using EMS. Perhaps more importantly, collaborative efforts including the addition of a specialized stroke nurse significantly decreased time to IV tPa administration for AIS patients. With this dedicated role, accelerated triage and more effective management of AIS patients is accomplished, leading to decreased intervention times and potentially improving patient outcomes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Andrew Bivard ◽  
Christopher Levi ◽  
Longting Lin ◽  
Xin Cheng ◽  
Richard Aviv ◽  
...  

In the present study we sought to measure the relative statistical value of various multimodal CT protocols at identifying treatment responsiveness in patients being considered for thrombolysis. We used a prospectively collected cohort of acute ischemic stroke patients being assessed for IV-alteplase, who had CT-perfusion (CTP) and CT-angiography (CTA) before a treatment decision. Linear regression and receiver operator characteristic curve analysis were performed to measure the prognostic value of models incorporating each imaging modality. One thousand five hundred and sixty-two sub-4.5 h ischemic stroke patients were included in this study. A model including clinical variables, alteplase treatment, and NCCT ASPECTS was weak (R2 0.067, P &lt; 0.001, AUC 0.605) at predicting 90 day mRS. A second model, including dynamic CTA variables (collateral grade, occlusion severity) showed better predictive accuracy for patient outcome (R2 0.381, P &lt; 0.001, AUC 0.781). A third model incorporating CTP variables showed very high predictive accuracy (R2 0.488, P &lt; 0.001, AUC 0.899). Combining all three imaging modalities variables also showed good predictive accuracy for outcome but did not improve on the CTP model (R2 0.439, P &lt; 0.001, AUC 0.825). CT perfusion predicts patient outcomes from alteplase therapy more accurately than models incorporating NCCT and/or CT angiography. This data has implications for artificial intelligence or machine learning models.


2021 ◽  
pp. neurintsurg-2021-017510
Author(s):  
Arne Potreck ◽  
Fatih Seker ◽  
Matthias Anthony Mutke ◽  
Charlotte Sabine Weyland ◽  
Christian Herweh ◽  
...  

ObjectivesAutomated CT perfusion mismatch assessment is an established treatment decision tool in acute ischemic stroke. However, the reliability of this method in patients with head motion is unclear. We therefore sought to evaluate the influence of head movement on automated CT perfusion mismatch evaluation.MethodsUsing a realistic CT brain-perfusion-phantom, 7 perfusion mismatch scenarios were simulated within the left middle cerebral artery territory. Real CT noise and artificial head movement were added. Thereafter, ischemic core, penumbra volumes and mismatch ratios were evaluated using an automated mismatch analysis software (RAPID, iSchemaView) and compared with ground truth simulated values.ResultsWhile CT scanner noise alone had only a minor impact on mismatch evaluation, a tendency towards smaller infarct core estimates (mean difference of −5.3 (−14 to 3.5) mL for subtle head movement and −7.0 (−14.7 to 0.7) mL for strong head movement), larger penumbral estimates (+9.9 (−25 to 44) mL and +35 (−14 to 85) mL, respectively) and consequently larger mismatch ratios (+0.8 (−1.5 to 3.0) for subtle head movement and +1.9 (−1.3 to 5.1) for strong head movement) were noted in dependence of patient head movement.ConclusionsMotion during CT perfusion acquisition influences automated mismatch evaluation. Potentially treatment-relevant changes in mismatch classifications in dependence of head movement were observed and occurred in favor of mechanical thrombectomy.


Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Laurie Paletz ◽  
Shlee Song ◽  
Nili Steiner ◽  
Betty Robertson ◽  
Nicole Wolber ◽  
...  

Introduction/Background information: At the onset of acute stroke symptoms, speed, capability, safety and skill are essential-lost minutes can be the difference between full recoveries, poor outcome, or even death. The Joint Commission's Certificate of Distinction for Comprehensive Stroke Centers recognizes centers that make exceptional efforts to foster better outcomes for stroke care. While many hospitals have been surveyed, Cedars Sinai was the 5 th hospital in the nation to receive this certification. Researchable question: Does Comprehensive stroke certification (CSC) demonstrate a significant effect on volume and quality of care? Methods: We assembled a cross-functional, multidisciplinary expert team representing all departments and skill sets involved in treating stroke patients. We carefully screened eligible patients with acute ischemic stroke We assessed the number of patients treated at Cedars-Sinai with IV-T-pa t 6 months before and then 6 months after CSC and the quality of their care including medical treatment and door to needle time. Results: In the 6 months prior to Joint Commissions Stroke Certification we treated 20 of 395acute stroke patients with t-PA with an average CT turnaround time of 31±19minutes and an average Door to needle time (DTNT) of 68±32minutes. In the 6 months since Joint Commission Stroke Certification we have increased the number of acute stroke patients treated by almost double. There were 37 out of 489(P=0.02, Chi Square) patients treated with IV t-PA with an average CT turnaround time of 22±7minutes (p=0.08, t-test, compared to pre-CSC) and an average DTNT of 61± 23minutes (not different than pre-CSC). Conclusion: We conclude that Joint Commission Certification for stroke was associated with an increased rate of treatment with IV rt-PA in acute ischemic stroke patients. We were not able to document an effect on quality of care. Further studies of the impact of CSC certification are warranted.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Zeguang Ren ◽  
Runqi Wangqin ◽  
Maxim Mokin ◽  
Anxin Wang ◽  
Liang Zhao ◽  
...  

Introduction: Vascular imaging after head CT to confirm large vessel occlusion (LVO) for acute stroke patients requires additional time and delays recanalization. We developed the T hrombectomy A cute M echanical re P erfusion A ssessment ( TAMPA ) scale for selecting patients with LVO for direct angiosuite transfer and intervention to improve recanalization time. Methods: The TAMPA scale was developed from our prospectively collected “Get with the Guidelines” database. We included all “stroke alert” patients between 1/2017 and 8/2018 with vascular imaging and National Institutes of Health Stroke Scale scores between 5 and 25. We excluded patients with immediately obvious non-stroke diagnoses, those lacking subsequent vascular imaging, or those with incomplete records. Different variables were collected. The TAMPA scale receiver operating characteristics curve (ROC) was compared with the ROCs of other commonly used scales. Results: 571 eligible patients from 2115 “acute stroke alerts” were identified for developing the TAMPA scale. The scale was established with a combination of 5 items with a total score of 9: CT hyperdense sign, parenchymal hypodensity, lateralizing hemiparalysis, gaze deviation and speech disturbance. A cutoff of ≥ 4 yielded a sensitivity of 68.98%, specificity of 72.91%, false positive rate of 27.09%, and false negative rate of 31.02%. Compared with other scales, such as total NIHSS, C-stat/CPSSS, RACE, FAST-ED and 3I-SS, the TAMPA scale had the best ROC for the selected group of patients. Conclusions: The TAMPA scale accurately predicts presence of clinically amenable LVO in patients with moderate to severe ischemic stroke. Use of the TAMPA scale to identify high probability mechanical embolectomy candidates for direct transfer to the angiosuite could potentially reduce revascularization times and increase treatment rates.


2014 ◽  
Vol 3 (7) ◽  
pp. 204798161454321
Author(s):  
Ratnesh Mehra ◽  
Chiu Yuen To ◽  
Omar Qahwash ◽  
Boyd Richards ◽  
Richard D Fessler

Background Computed tomography perfusion (CTP) is a commonly used modality of neurophysiologic imaging to aid the selection of acute ischemic stroke patients for neuroendovascular intervention by identifying the presence of penumbra versus infarcted brain tissue. However many patients present with evidence of cerebral ischemia with normal CTP, and in that case, should intravenous thrombolytics be given? Purpose To demonstrate if tissue-type plasminogen activator (tPA)-eligible stroke patients without perfusion defects demonstrated on CTP would benefit from administration of intravenous thrombolytics. Material and Methods We retrospectively identified patients presenting with acute ischemic symptoms who received intravenous tPA (IV-tPA) from January to June 2012 without a perfusion defect on CTP. Clinical and radiographic findings including the NIHSS at presentation, 24 h, and at discharge, symptomatic and asymptomatic hemorrhagic transformation, and the modified Rankin score at 30 days were collected. A reduction of NIHSS of greater than 4 points or resolution of symptoms was considered significant. Results Seventeen patients were identified with a mean NIHSS of 8.2 prior to administration of intravenous thrombolytics, 3.5 after 24 h, and 2.5 at discharge. Among them, 13 patients had significant improvement of NIHSS with a mean reduction of 6.15 points at 24 h. One patient initially improved but had delayed hemorrhagic transformation and died. Two patients had improvement in NIHSS but were not significant and two patients had increased in NIHSS at 24 h, although one eventually improved at discharge. There was no asymptomatic hemorrhagic transformation. Mean mRS at 3 months is 1.76. Conclusion The failure to identify a perfusion deficit by CTP should not be used as a contraindication for intravenous thrombolytics. Criteria for administration of intravenous thrombolytics should still be based on time from symptom onset as previously published by NINDS.


2015 ◽  
Vol 40 (3-4) ◽  
pp. 182-190 ◽  
Author(s):  
Harri Rusanen ◽  
Jukka T. Saarinen ◽  
Niko Sillanpää

Background: We studied the impact of collateral circulation on CT perfusion (CTP) parametric maps and the amount of salvaged brain tissue, the imaging and clinical outcome at 24 h and at 3 months in a retrospective acute (<3 h) stroke cohort (105 patients) with anterior circulation thrombus treated with intravenous thrombolysis. Methods: Baseline clinical and imaging information were collected and groups with different collateral scores (CS) were compared. Binary logistic regression analyses using good CS (CS ≥2) as the dependent variable were calculated. Results: CTP Alberta Stroke Program Early CT Score (ASPECTS) was successfully assessed in 58 cases. Thirty patients displayed good CS. Poor CS were associated with more severe strokes according to National Institutes of Health Stroke Scale (NIHSS) at arrival (15 vs. 7, p = 0.005) and at 24 h (10 vs. 3, p = 0.003) after intravenous thrombolysis. Good CS were associated with a longer mean onset-to-treatment time (141 vs. 121 min, p = 0.009) and time to CTP (102 vs. 87 min, p = 0.047), better cerebral blood volume (CBV) ASPECTS (9 vs. 6, p < 0.001), better mean transit time (MTT) ASPECTS (6 vs. 3, p < 0.001), better noncontrast CT (NCCT) ASPECTS (10 vs. 8, p < 0.001) at arrival and with favorable clinical outcome at 3 months (modified Rankin Scale ≤2, p = 0.002). The fraction of penumbra that was salvageable at arrival and salvaged at 24 h was higher with better CS (p < 0.001 and p = 0.035, respectively). In multivariate analysis, time from the onset of symptoms to imaging (p = 0.037, OR 1.04 per minute, 95% CI 1.00-1.08) and CBV ASPECTS (p = 0.001, OR 2.11 per ASPECTS point, 95% CI 1.33-3.34) predicted good CS. In similar multivariable models, MTT ASPECTS (p = 0.04, OR 1.46 per ASPECTS point, 95% CI 1.02-2.10) and NCCT ASPECTS predicted good CS (p = 0.003, OR 4.38 per CT ASPECTS point, 95% CI 1.66-11.55) along with longer time from the onset of symptoms to imaging (p = 0.045, OR 1.03 per minute, 95% CI 1.00-1.06 and p = 0.02, OR 1.05 per minute, 95% CI 1.00-1.09, respectively). CBV ASPECTS had a larger area under the receiver operating characteristic curve for good CS (0.837) than NCCT ASPECTS (0.802) or MTT ASPECTS (0.752) at arrival. Conclusions: Favorable CBV ASPECTS, NCCT ASPECTS and MTT ASPECTS are associated with good CS along with more salvageable tissue and longer time from the onset of symptoms to imaging in ischemic stroke patients treated with intravenous thrombolysis.


Sign in / Sign up

Export Citation Format

Share Document