Internal gas atmospheres, ethanol, and leakage of electrolytes from a flood-tolerant and a flood-susceptible sweet potato cultivar as influenced by anaerobiosis

1983 ◽  
Vol 61 (12) ◽  
pp. 3399-3404 ◽  
Author(s):  
Ling A. Chang ◽  
Larry K. Hammett ◽  
David M. Pharr

The postanaerobic behavior of sweet potato roots from a flood-tolerant cultivar, 'Centennial,' and a flood-susceptible cultivar, 'Caromex,' was studied. High concentrations of CO2 and low concentrations of O2 were present in the internal atmosphere of 'Caromex' roots even after the anaerobically pretreated roots were restored to air for a few days, whereas in 'Centennial,' the internal gas atmosphere was less affected by anoxia. Ethanol accumulation in 'Caromex' was consistently higher than in 'Centennial,' and the postanaerobic changes were different between cultivars. An inducation of electrolyte leakage was observed from both cultivars immediately after roots were exposed to a CO2-enriched environment for 48 h. The leakage became greater in 'Caromex' after a 3-day aerobic exposure. In 'Centennial,' leakage of electrolytes due to CO2 treatment diminished at the end of 3 days. Application of ethanol to the discs had no immediate effect on electrolyte leakage in either cultivar under a N2 environment. However, anaerobiosis alone resulted in higher electrolyte leakage. It remains to be determined that the postanaerobic patterns of 'Caromex' and 'Centennial' are characteristic of flood-susceptible and flood-tolerant sweet potato cultivars in general.

2020 ◽  
Vol 15 (7) ◽  
pp. 1934578X2093693
Author(s):  
Shadrack Isaboke Makori ◽  
Tai-Hua Mu ◽  
Hong-Nan Sun

The quest to determine and use polyphenolic compounds present in fruits and vegetables as natural antioxidants has recently attracted much attention due to their beneficial health effects. In this study, the total polyphenol content (TPC), total flavonoid content (TFC), total anthocyanin content (TAC), antioxidant activity (AA), and individual polyphenol components of Simon No. 1, Yuzi No. 7, Shangshu 19, and Pushu 32 sweet potato cultivars (edible parts: leaf, stalk, stem, skin, and flesh) were investigated. TPC, TFC, and TAC values ranged from 440 ± 0.17-12080 ± 0.58 CAE mg/100 g DW, 94 ± 0.08-4210 ± 0.74 QE mg/100 g DW, and 7 ± 0.01-1010 ± 0.54 CGE mg/100 g DW, respectively. Yuzi No. 7 sweet potato cultivar contained significantly higher amounts of TPC, TFC, TAC, and AA in all its edible parts, followed by Pushu 32, Simon No. 1, and Shangshu 19 in that order. Regardless of the sweet potato cultivar used, TPC, TFC, and TAC of sweet potato leaves were significantly higher than those of other edible parts. High-performance liquid chromatography revealed 19 individual phenolic compounds. In general, 3,5-di- O-caffeoylquinic acid, astragalin, and cyanidin were the predominant phenolic acid, flavonoid, and anthocyanin compounds, respectively. The correlation analysis suggested that higher AA could be attributed to higher polyphenol content. Based on our results, edible parts of Yuzi No. 7 sweet potato cultivar presented the highest amounts of polyphenol content and AA suggesting the possibility of utilizing this cultivar by farmers and the food industry as a functional food product.


2021 ◽  
Vol 8 ◽  
Author(s):  
Charmaine J. Phahlane ◽  
Sunette M. Laurie ◽  
Tinotenda Shoko ◽  
Vimbainashe E. Manhivi ◽  
Dharini Sivakumar

In this study, leaves of sweet potato cultivars from South Africa (“Ndou,” “Bophelo,” “Monate,” and “Blesbok”), “Beauregard,” a sweet potato cultivar from the USA, and a Peruvian cultivar “199062. 1” were analyzed using UPLC/QTOF/MS and chemometrics, with the aim of characterizing the locally developed sweet potato cultivars and comparing them with already well-known established varieties on the market. A set of 13 phenolic compounds was identified. A partial least squares discriminant analysis, a hierarchical cluster analysis, and variables importance in projection were used to successfully distinguish sweet potato varieties based on their distinct metabolites. Caffeic acid enabled to distinguish Cluster 1 leaves of varieties (“Beauregard” and “Ndou”) from Cluster 2 (“199062.1,” “Bophelo,” “Monate,” and “Blesbok”). The leaves of “Bophelo” contained the highest concentrations of rutin, quercetin 3-O-galactoside, 3-caffeoylquinic acid (3-CQA), (5-CQA), 1,3 dicaffeoylquinic acid (1,3-diCQA), 1,4-diCQA, and 3,5-diCQA. Furthermore, Bophelo leaves showed the highest antioxidant activities (FRAP 19.69 mM TEACg−1 and IC50 values of (3.51 and 3.43 mg ml−1) for DPPH and ABTS, respectively, compared to the other varieties. Leaves of “Blesbok” contained the highest levels of β-carotene (10.27 mg kg−1) and zeaxanthin (5.02 mg kg−1) on a dry weight basis compared to all other varieties. This study demonstrated that the leaves of local cultivars “Bophelo” and “Blesbok” have the potential to become functional ingredients for food processing.


1992 ◽  
Vol 68 (05) ◽  
pp. 570-576 ◽  
Author(s):  
Mary A Selak

SummaryWe have previously demonstrated that human neutrophil cathepsin G is a strong platelet agonist that binds to a specific receptor. This work describes the effect of neutrophil elastase on cathepsin G-induced platelet responses. While platelets were not activated by high concentrations of neutrophil elastase by itself, elastase enhanced aggregation, secretion and calcium mobilization induced by low concentrations of cathepsin G. Platelet aggregation and secretion were potentiated in a concentration-dependent manner by neutrophil elastase with maximal responses observable at 200 nM. Enhancement was observed when elastase was preincubated with platelets for time intervals of 10–60 s prior to addition of a low concentration of cathepsin G and required catalytically-active elastase since phenylmethanesulphonyl fluoride-inhibited enzyme failed to potentiate cell activation. Neutrophil elastase potentiation of platelet responses induced by low concentrations of cathepsin G was markedly inhibited by creatine phosphate/creatine phosphokinase and/or indomethacin, indicating that the synergism between elastase and cathepsin G required the participation of ADP and thromboxane A2. On the other hand, platelet responses were not attenuated by the PAF antagonist BN 52021, signifying that PAF-acether did not play a role in elastase potentiation. At higher concentrations porcine pancreatic elastase exhibits similar effects to neutrophil elastase, demonstrating that the effect of elastase was not unique to the neutrophil protease. While neutrophil elastase failed to alter the ability of cathepsin G to hydrolyze a synthetic chromogenic substrate, preincubation of platelets with elastase increased the apparent affinity of cathepsin G binding to platelets. In contrast to their effect on cathepsin G-induced platelet responses, neither neutrophil nor pancreatic elasatse potentiated aggregation or dense granule release initiated by ADP, PAF-acether, arachidonic acid or U46619, a thromboxane A2 mimetic. Moreover, unlike its effect on cathepsin G, neutrophil elastase inhibited thrombin-induced responses. The current observations demonstrate that elastase can potentiate platelet responses mediated by low concentrations of cathepsin G, suggesting that both enzymes may function synergistically to activate platelets under conditions where neutrophil degranulation occurs.


1989 ◽  
Vol 61 (02) ◽  
pp. 254-258 ◽  
Author(s):  
Margaret L Rand ◽  
Peter L Gross ◽  
Donna M Jakowec ◽  
Marian A Packham ◽  
J Fraser Mustard

SummaryEthanol, at physiologically tolerable concentrations, inhibits platelet responses to low concentrations of collagen or thrombin, but does not inhibit responses of washed rabbit platelets stimulated with high concentrations of ADP, collagen, or thrombin. However, when platelet responses to high concentrations of collagen or thrombin had been partially inhibited by prostacyclin (PGI2), ethanol had additional inhibitory effects on aggregation and secretion. These effects were also observed with aspirin- treated platelets stimulated with thrombin. Ethanol had no further inhibitory effect on aggregation of platelets stimulated with ADP, or the combination of ADP and epinephrine. Thus, the inhibitory effects of ethanol on platelet responses in the presence of PGI2 were very similar to its inhibitory effects in the absence of PGI2, when platelets were stimulated with lower concentrations of collagen or thrombin. Ethanol did not appear to exert its inhibitory effects by increasing cyclic AMP above basal levels and the additional inhibitory effects of ethanol in the presence of PGI2 did not appear to be brought about by further increases in platelet cyclic AMP levels.


1970 ◽  
Vol 23 (03) ◽  
pp. 601-620 ◽  
Author(s):  
Th. B Tschopp

SummaryAggregation of cat platelets in the citrated plasma is examined by means of Born’s absorptiometer. A marked tendency of the platelets of this species to spontaneous aggregation necessitated first of all the development of an improved technique of blood collection.A hypothesis according to which 5-HT is released from the platelets, explains the absence of oscillations on the base line of the absorptiometer, the absence of platelet swelling, when ADP is added, and the effect of stirring on the aggregation curves in cat PRP. The average volume of cat platelets amounts to 10.46 μ3 when directly fixed in the blood, when fixed from PRP to 12.17 μ3, when fixed from stirred PRP to 13.51 μ3.In low concentrations (0.3-2 μM) ADP produce reversible aggregation; in narrowly restricted, individually dissimilar mean concentrations irreversible aggregation in two phases and in high concentrations, irreversible aggregation in one phase. Like ADP serotonin produces 2 phase irreversible aggregation in concentrations of 3-10 μM, but unlike ADP, the aggregation velocity decreases again with high 5-HT concentrations (>100 μM). Adrenaline does not produce aggregation and it is likely that adenosine and adenosine monophosphate inhibit the aggregation by serotonin but not by ADP. Species differences in the aggregation of human, rabbit and cat platelets are discussed.


1971 ◽  
Vol 26 (01) ◽  
pp. 145-166
Author(s):  
E Deutsch ◽  
K Lechner ◽  
K Moser ◽  
L Stockinger

Summary1. The aniline derivative AN 162, Donau Pharmazie, Linz, Austria, has a dual action on the blood coagulation: an anticoagulant and an coagulation enhancing effect.2. The anticoagulant action may only be demonstrated with high concentrations (over 1 X 10”3 M related to plasma) preferentially in PPP. It is partially caused by an inhibition of the endogenous way of generation of the prothrombin converting principle. In addition it is suggested that it interferes with the fibrinogen-fibrin reaction in a manner not yet understood.3. The coagulant action is caused by a greater availability of platelet constituents at low concentrations of AN 162 (over 1 × 10-4 M) and by the induction of a release reaction at higher concentrations. The platelet factors 3 and 4, serotonin, adenine, and acid phosphatase are released.4. AN 162 inhibits platelet aggregation. This inhibition can be demonstrated by the PAT of Breddin and in the stirred aggregation test of Born. It is more effective to inhibit the collagen-induced and the second phase of the adrenaline-induced aggregation than the ADP induced one. The platelet retention (test of Hellem) is also reduced.5. The action of AN 162 on the platelets is caused by a damage of the platelet membrane which becomes permeabel for both, soluble platelet constitutents and granula.6. AN 162 interferes with the energy metabolism of the platelets. It causes a loss of ATP, and inhibits the key-enzymes of glycolysis, citric acid cycle, fatty acid oxydation and glutathione reduction.7. AN 162 inhibits the growth of fibroblasts without influence on mitosis.


1986 ◽  
Vol 55 (01) ◽  
pp. 136-142 ◽  
Author(s):  
K J Kao ◽  
David M Shaut ◽  
Paul A Klein

SummaryThrombospondin (TSP) is a major platelet secretory glycoprotein. Earlier studies of various investigators demonstrated that TSP is the endogenous platelet lectin and is responsible for the hemagglutinating activity expressed on formaldehyde-fixed thrombin-treated platelets. The direct effect of highly purified TSP on thrombin-induced platelet aggregation was studied. It was observed that aggregation of gel-filtered platelets induced by low concentrations of thrombin (≤0.05 U/ml) was progressively inhibited by increasing concentrations of exogenous TSP (≥60 μg/ml). However, inhibition of platelet aggregation by TSP was not observed when higher than 0.1 U/ml thrombin was used to activate platelets. To exclude the possibility that TSP inhibits platelet aggregation by affecting thrombin activation of platelets, three different approaches were utilized. First, by using a chromogenic substrate assay it was shown that TSP does not inhibit the proteolytic activity of thrombin. Second, thromboxane B2 synthesis by thrombin-stimulated platelets was not affected by exogenous TSP. Finally, electron microscopy of thrombin-induced platelet aggregates showed that platelets were activated by thrombin regardless of the presence or absence of exogenous TSP. The results indicate that high concentrations of exogenous TSP (≥60 μg/ml) directly interfere with interplatelet recognition among thrombin-activated platelets. This inhibitory effect of TSP can be neutralized by anti-TSP Fab. In addition, anti-TSP Fab directly inhibits platelet aggregation induced by a low (0.02 U/ml) but not by a high (0.1 U/ml) concentration of thrombin. In conclusion, our findings demonstrate that TSP is functionally important for platelet aggregation induced by low (≤0.05 U/ml) but not high (≥0.1 U/ml) concentrations of thrombin. High concentrations of exogenous TSP may univalently saturate all its platelet binding sites consequently interfering with TSP-crosslinking of thrombin-activated platelets.


2012 ◽  
Vol 41 (12) ◽  
pp. 1656-1662 ◽  
Author(s):  
Meishan Li ◽  
Gwi Yeong Jang ◽  
Sang Hoon Lee ◽  
Koan Sik Woo ◽  
Hyun Man Sin ◽  
...  

1992 ◽  
Vol 26 (3-4) ◽  
pp. 907-914 ◽  
Author(s):  
A. Attal ◽  
M. Brigodiot ◽  
P. Camacho ◽  
J. Manem

The purpose of this study is to gain a better understanding of the biological phenomena involved in the production of hydrogen sulfide in urban wastewater (UWW) systems. It is found that the UWW itself naturally possesses the biomass needed to consume the sulfates. These heterotrophic sulfate-reducing bacteria populations, though immediately active in strict anaerobic conditions, are present only in very low concentrations in the UWW. A concentration of them was studied within the pressure pipes, in the form of deposits, and this justifies the high concentrations of sulfides measured in certain wastewater networks. There are two reasons why the ferrous sulfate used as a treatment in any wastewater networks should not cause the production of additional sulfides. Firstly, the sulfate consumption kinetics are always too slow, relative to the residence time of the water in the pipe, for all of the sulfates to be consumed anyway. Secondly, the amount of assimilable carbon, soluble carbon, and carbon from suspended solid (SS) hydrolysis is insufficient.


2017 ◽  
Vol 10 (1) ◽  
pp. 70-81 ◽  
Author(s):  
Muhammad Afzal Rizvi ◽  
Syed Abid Ali ◽  
Iqra Munir ◽  
Kousar Yasmeen ◽  
Rubina Abid ◽  
...  

Aim: Quinoa is a popular source of protein, minerals and alternative to traditional grains. The objective of this study is to introduce the Quinoa in the semi-arid zone of Sindh province of Pakistan. Method: A variety of NARC-9 from the agricultural Punjab province was cultivated and subjected to analyze the growth, morphological characters of the varieties obtained, saponin, protein and the elemental composition viz. Cd, Cu, Fe, K, Na, Pb, and Zn. Result: The result demonstrated the optimum growth and no disease were found in the experimental area. At least three major varieties of quinoa were obtained. Seed morphological data of these three quinoa cultivars were collected. The average saponin levels were quite reasonable. Overall proteins band pattern revealed very high polymorphism in quinoa cultivars and the results were also in good agreement with earlier studies. Conclusion: All quinoa cultivars of Madinat al-Hikmah showed high concentrations of albumin than globulin concentrations (i.e. 48-52% and 24-27%, respectively) as compared to control seeds from market that had similar concentrations of the two fractions i.e. 35.58% and 37.68%, respectively. Likewise, low concentrations of prolamin 14-16% and glutelin 11-12% compared to control seeds 13% rank our crop much better quality than the imported one in the market. The trend of elemental accumulation was followed as K >Na >Fe >Zn >Cu >Pb >Cd, while for comparison it was Na >K >Zn >Fe >Cu >Pb >Cd >Pb for wheat grown under similar conditions. Traditional grains together make a major contribution to the total nutritional element intake of the average Pakistani citizen through diet, not only because of large amounts consumed, but also in part by suitable levels of their proteins and elemental up take for good health. Thus the successful cultivation of quinoa in the semi-arid zone of Sindh will certainly prove beneficial.


Sign in / Sign up

Export Citation Format

Share Document