electrolyte leakage
Recently Published Documents


TOTAL DOCUMENTS

427
(FIVE YEARS 87)

H-INDEX

34
(FIVE YEARS 4)

Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 84
Author(s):  
Rong Zhou ◽  
Benjian Cen ◽  
Fangling Jiang ◽  
Mintao Sun ◽  
Junqin Wen ◽  
...  

Salt stress is one of the primary abiotic stresses that negatively affects agricultural production. Melatonin, as a useful hormone in plants, has been shown to play positive roles in crop improvement to abiotic stress conditions. However, it remains unclear whether spraying melatonin could reduce the halotolerance gap between tomato genotypes with different salt sensitivities. Here, plant growth, H2O2 content, electrolyte leakage, antioxidant system, gas exchange, pigment content, and chloroplast ultrastructure of salt sensitive genotype (SG) and resistant genotype (RG) at CK (control), M (spraying melatonin), S (salt), and SM (spraying melatonin under salt stress) were investigated. The results showed that the weight, height, and stem diameter of the plant at SM from both genotypes significantly increased compared with S. The plant undergoing SM from both genotypes showed significantly decreased H2O2 but increased activity of SOD, APX, GR, and GSH, as well as net photosynthetic rate and Fv/Fm, as compared with S. The ratio between SM and S (SM/S) of SG was significantly higher than that of RG in terms of plant height and stem diameter, whereas antioxidant parameters, H2O2 content, and electrolyte leakage showed no difference between RG and SG in SM/S. The SM/S of SG in terms of photosynthetic parameters and pigment content were significantly higher than that of RG. Chloroplast ultrastructure showed remarkable changes under salt stress, whereas spraying melatonin reduced the destruction of chloroplasts, especially for SG. We concluded that spraying melatonin reduces the halotolerance gap between SG and RG by photosynthesis regulation instead of the antioxidant mechanism. This indicated that the positive roles of melatonin on tomato plants at salt stress depend on the genotype sensitivity.


2021 ◽  
Vol 10 (1) ◽  
pp. 57
Author(s):  
Chadlia Hachani ◽  
Mohammed S. Lamhamedi ◽  
Abdenbi Zine El Abidine ◽  
Mejda Abassi ◽  
Damase P. Khasa ◽  
...  

The success of mine site restoration programs in arid and semi-arid areas poses a significant challenge and requires the use of high-quality seedlings capable of tolerating heavy metal stresses. The effect of ectomycorrhizal fungi on different physiological traits was investigated in Pinus halepensis seedlings grown in soil contaminated with heavy metals (Pb-Zn-Cd). Ectomycorrhizal (M) and non-ectomycorrhizal (NM) seedlings were subjected to heavy metals stress (C: contaminated, NC: control or non-contaminated) soils conditions for 12 months. Gas exchange, chlorophyll fluorescence, water relations parameters derived from pressure–volume curves and electrolyte leakage were evaluated at 4, 8 and 12 months. Ectomycorrhizal symbiosis promoted stronger resistance to heavy metals and improved gas exchange parameters and water-use efficiency compared to the non-ectomycorrhizal seedlings. The decrease in leaf osmotic potentials (Ψπ100: osmotic potential at saturation and Ψπ0: osmotic potential with loss of turgor) was higher for M-C seedling than NM-C ones, indicating that the ectomycorrhizal symbiosis promotes cellular osmotic adjustment and protects leaf membrane cell against leakage induced by Pb, Zn and Cd. Our results suggest that the use of ectomycorrhizal symbiosis is among the promising practices to improve the morphophysiological quality of seedlings produced in forest nurseries, their performance and their tolerance to multi-heavy metal stresses.


2021 ◽  
Vol 13 (4) ◽  
pp. 10738
Author(s):  
Babafemi S. OLISA ◽  
Femi E. AWOSANMI ◽  
Michael S. AKINROPO ◽  
Philip O. OJO ◽  
Khalid ISHIAK ◽  
...  

Hybrids and open pollinated varieties (OPVs) are two commercial maize seed types cultivated in Nigeria. Information on their response to mechanical damage during processing is limited. This study is thus aimed at assessing the response of hybrids and OPVs of maize seeds to mechanical damage which would facilitate fabrication of processing facilities suitable for either of the maize types. Six maize varieties: three hybids (‘New Kaduna’, ‘SDM-1’, and ‘JO-195’) and three OPVs (‘Sammaz 15’, ‘Sammaz 27’ and ‘Suwan-1-stry’) were used for the study. The seed samples were subjected to standard germination, seedling vigour analysis, accelerated ageing, conductivity and fast green tests. The result showed that all the hybrid seed varieties had more damaged seeds than their OPVs counterpart. Shoot length and root length were more affected than other parts of the seedling. There were differences in the magnitude of electrolyte leakage as well as in what time each seed type (hybrid or OPVs) passed through the phases with ‘JO-195’ having the highest rate of electrolyte leakage. Hybrid seeds had lower resistance to mechanical damage and poorer storability when compared with the OPVs. In the overall, for all the traits, ‘Sammaz 15’, the best among OPVs was more promising when compared with ‘SDM-1’ which was the best among hybrid varieties. Processing machine equipment and accessories that are suitable for hybrid seeds might be inappropriate for conditioning OPVs.


Author(s):  
Evandro Manoel da Silva ◽  
Hans Raj Gheyi ◽  
Reginaldo Gomes Nobre ◽  
Lauriane Almeida dos Anjos Soares ◽  
Benedito Ferreira Bonifácio

This study evaluated the influence of combinations of nitrogen and potassium doses on the physiology and fruit production of West Indian cherry irrigated with waters of different salinities in the second year of cultivation. The experiment was conducted in the municipality of Pombal-PB, Brazil, in plastic containers adapted as lysimeters installed in the field, in a randomized block design, 5 x 4 factorial scheme corresponding to five levels of electrical conductivity of irrigation water (ECw): 0.3, 1.3, 2.3, 3.3 and 4.3 dS m-1, and four combinations of nitrogen and potassium fertilization: 70% N + 50% K2O; 100% N + 75% K2O; 130% N + 100% K2O and 160% N + 125% K2O of the dose recommended for West Indian cherry, with three replicates and one plant per plot. The cv. ‘Flor Branca’ was grafted on the cv. ‘Junco’, between 420 and 550 days after transplanting. Nitrogen and potassium combinations did not mitigate the deleterious effects of water salinity on the physiology and fruit formation of West Indian cherry. An increase in ECw intensifies the intercellular electrolyte leakage and reduces the water potential in the branch, chlorophyll content in the leaves, CO2 assimilation rate, equatorial and polar diameters as well as the mass of fruits. Fertilization of plants with 70% N + 50% of K2O, compared to the other fertilization combinations, causes less intercellular electrolyte leakage and promotes higher CO2 assimilation rates, higher chlorophyll content in leaves, and fruits of larger size and mass. Keywords: Malpighia emarginata D. C, mineral fertilization, salt stress.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 510
Author(s):  
Khaled Abdelaal ◽  
Kotb A. Attia ◽  
Gniewko Niedbała ◽  
Tomasz Wojciechowski ◽  
Yaser Hafez ◽  
...  

Garlic is an important vegetable in terms of its economic value and also as a medicinal plant. In this study, chitosan (300 mM) and yeast extract (8 g/L) were used individually or in combination to improve the yields of garlic plants under drought conditions (i.e., 75% and 50% of the water they would normally receive from irrigation) for two seasons. Significant decreases in numbers of leaves per plant and plant height, plant dry weight, relative water content, and chlorophyll a and b concentrations were found in stressed garlic plants in both seasons. The greatest reductions in these characters were recorded in plants that received only 50% of the normal irrigation in both seasons. Levels of hydrogen peroxide, products of lipid peroxidation such as malondialdehyde, and superoxide, as well as percentages of electrolyte leakage, were elevated considerably and were signals of oxidative damage. The application of the yeast extract (8 g/L) or chitosan (300 mM) individually or in combination led to a remarkable increase in the most studied characters of the stressed garlic plants. The combination of yeast extract (8 g/L) plus chitosan (300 mM) led to increase plant height (44%), ascorbic acid levels (30.2%), and relative water content (36.8%), as well as the chlorophyll a (50.7%) and b concentrations (79%), regulated the proline content and levels of antioxidant enzymes in stressed garlic plants that received 75% of the normal irrigation, and this decreased the signs of oxidative stress (i.e., percentage of electrolyte leakage and levels of malondialdehyde, hydrogen peroxide, and superoxide).


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0251389
Author(s):  
Tiequan Niu ◽  
Tianpeng Zhang ◽  
Yue Qiao ◽  
Pengfei Wen ◽  
Guangqian Zhai ◽  
...  

Glycinebetaine (GB) is an osmoprotectant found in plants under environmental stresses that incorporates drought and is associated with drought tolerance in several plants, such as the woody pear. However, how GB improves drought tolerance in pears remains unclear. In the current study, we explored the mechanism by which GB enhances drought tolerance of whole pear plants (Pyrus bretschneideri Redh. cv. Suli) supplied with exogenous GB. The results showed that on the sixth day after withholding water, levels of O2·−, H2O2, malonaldehyde (MDA) and electrolyte leakage in the leaves were substantially increased by 143%, 38%, 134% and 155%, respectively. Exogenous GB treatment was substantially reduced O2·−, H2O2, MDA and electrolyte leakage (38%, 24%, 38% and 36%, respectively) in drought-stressed leaves. Furthermore, exogenous GB induced considerably higher antioxidant enzyme activity in dry-stressed leaves than drought-stressed treatment alone on the sixth day after withholding water, such as superoxide dismutase (SOD) (201%) and peroxidase (POD) (127%). In addition, these GB-induced phenomena led to increased endogenous GB levels in the leaves of the GB 100 + drought and GB 500 + drought treatment groups by 30% and 78%, respectively, compared to drought treatment alone. The findings obtained were confirmed by the results of the disconnected leaf tests, in which GB contributed to a substantial increase in SOD activity and parallel dose- and time-based decreases in MDA levels. These results demonstrate that GB-conferred drought resistance in pears may be due in part to minimizing symptoms of oxidative harm incurred in response to drought by the activities of antioxidants and by reducing the build-up of ROS and lipid peroxidation.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2264
Author(s):  
Rim Ben Youssef ◽  
Nahida Jelali ◽  
Nadia Boukari ◽  
Alfonso Albacete ◽  
Cristina Martinez ◽  
...  

The current work aimed to investigate the effect of seed priming with different agents (CaCl2, KCl, and KNO3) on germination and seedling establishment in seeds of the barley species of both Hordeum vulgare (L. Manel) and Hordeum maritimum germinated with three salt concentrations (0, 100, and 200 mM NaCl). The results showed that under unprimed conditions, salt stress significantly reduced the final germination rate, the mean daily germination, and the seedling length and dry weight. It led to a decrease in the essential nutrient content (iron, calcium, magnesium, and potassium) against an increase in sodium level in both of the barley species. Moreover, this environmental constraint provoked a membrane injury caused by a considerable increase in electrolyte leakage and the malondialdehyde content (MDA). Data analysis proved that seed priming with CaCl2, KCl, and KNO3 was an effective method for alleviating barley seed germination caused by salt stress to varying degrees. Different priming treatments clearly stimulated germination parameters and the essential nutrient concentration, in addition to increasing the seedling growth rate. The application of seed priming reduced the accumulation of sodium ions and mitigated the oxidative stress of seeds caused by salt. This mitigation was traduced by the maintenance of low levels of MDA and electrolyte leakage. We conclude that the priming agents can be classed into three ranges based on their efficacy on the different parameters analyzed; CaCl2 was placed in the first range, followed closely by KNO3, while the least effective was KCl, which placed in the third range.


Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 385
Author(s):  
Karen Cornejo-Ríos ◽  
María del Pilar Osorno-Suárez ◽  
Sergio Hernández-León ◽  
Ma Isabel Reyes-Santamaría ◽  
Javier Andrés Juárez-Díaz ◽  
...  

The acceleration of climate change is necessitating the adoption of shifts in farming practices and technology to ensure the sustainability of agricultural production and food security. Because abiotic stresses such as drought and chilling represent major constraints on agricultural productivity worldwide, in this study, the mitigation of such stresses by the fungus Trichoderma asperellum HK703 was evaluated. The fungus was grown on whole grain oats, kaolin and vermiculite for 5 days and then the formulation was mixed with the potting soil to colonize the roots of the plants. The effect of the bioinoculant on tomato under drought or chilling was analyzed in tomato (Solanum lycopersicum) plants. Leaf, stem and root succulence, electrolyte leakage, the relative growth rate of plant height, stem thickness and leaf area, as well new leaf emergence and chlorophyll content were determined. The results showed that drought or chilling increased electrolyte leakage and reduced plant growth and development traits and chlorophyll (a,b) content. However, inoculation with T. asperellum eliminated or reduced most of the negative impacts of drought compared to the non-stressed plants, with the exception of chlorophyll b content. Furthermore, inoculation with T. asperellum improved some of the evaluated features in chilling stressed plants but had no effect on plant height or chlorophyll (a,b) content. The results of this study indicate that T. asperellum was more effective in alleviating drought than chilling stress in tomato plants.


2021 ◽  
Vol 13 (30) ◽  
pp. 6-12
Author(s):  
Valeria Ivanova ◽  
◽  
Nadejda Zapryanova ◽  

The global climate models predict changed precipitation patterns with frequent episodes of drought. Scarcity of water is a severe environmental constraint to plant productivity. Plants display a variety of physiological and biochemical responses at cellular and whole-organism levels towards prevailing drought stress. This study included container experiments with three flower crops aster (Callistephus chinensis), helichrysum (Helichrysum bracteatum) and echinacea (Echinaceae purpurea). Drought was simulated by reducing the number of watering’s to field capacity from 25–30 to 85–90 %. Three levels of watering were studied - three times, twice and once a week. The results showed that the cultivation of ornamental plants in containers under reduced watering conditions (twice or once a week) for a period of 3 months led to considerable inhibition of growth and even to plants death. The relative water content and the level of electrolyte leakage vary depending on the weekly number of waterings. The highest values of electrolyte leakage were reported in a single watering for aster -5107.1µS / g, for helichrysum -8314.9 µS / g and for echinacea -3722.8 µS / g. The high rates of conductivity, especially with one-time weekly watering, are evidence of the damage caused by the simulated water stress. This corresponds to the reported low percentages of RWC % and the low values for the height and diameter of the plants. The relative water content in plant tissues decreases depending on the irrigation regime. The lowest values for aster, helichrysum and echinacea were again observed in the variant with a single weekly watering, respectively 15%, 11.5% and 15.8%.


Sign in / Sign up

Export Citation Format

Share Document