An appropriate physiological control for environmental temperature studies: comparative growth kinetics of winter rye
The accurate interpretation of physiological and biochemical alterations observed in plants grown under contrasting environmental conditions requires knowledge of their relative physiological ages. For this purpose, we compared the growth kinetics of winter rye (Secale cereale L. cv. Puma) at nonhardening and cold-hardening temperatures. Growth at nonhardening temperatures was characterized by a 10-day lag phase with the attainment of maximum growth after about 28 days. Growth at cold-hardening temperatures resulted in an extension of the lag phase to about 21 days with maximum growth being attained after 56 days. The calculated growth coefficient at cold-hardening temperatures was 35–40% of that at nonhardening temperatures. This relationship was consistent with growth parameters such as leaf dry weight, fresh weight, and area, but not with plant height. Although total leaf dry weight and total number of leaves per plant did not differ between nonhardened and cold-hardened plants at maximum growth, total leaf area per plant and stretched plant height was 3- to 4-times greater in nonhardened than in cold-hardened plants. This resulted in a fourfold increase in leaf dry weight per leaf area during growth at low temperature in contrast to the maintenance of a constant ratio during growth at nonhardening conditions. The increase in this ratio during low temperature growth was, in part, accounted for by a decrease in water content and an increase in cytoplasmic content. These results were confirmed by the investigation of growth on an individual leaf basis. However, the growth response of leaves 1 and 2 differed from that of leaves 3 and 4 when the leaf dry weight: leaf area ratio was measured as a function of time at cold-hardening temperatures. This indicates that the stage of leaf development influences its growth response to an altered environment. The results of the development of leaf freezing tolerance indicated that maximum vegetative growth appeared to coincide with maximum freezing tolerance of leaves from cold-hardened plants (−22 °C) but not of leaves from unhardened plants (−11 °C).