Kinetics studies of rapid strain-promoted [3+2] cycloadditions of nitrones with bicyclo[6.1.0]nonyne

2014 ◽  
Vol 92 (4) ◽  
pp. 337-340 ◽  
Author(s):  
Douglas A. MacKenzie ◽  
John Paul Pezacki

Strain-promoted alkyne−nitrone cycloaddition (SPANC) reactions represent a bioorthogonal labeling strategy that is both very rapid and at the same time efficient and selective. Nitrones provide increased reaction rates as well as greater susceptibility toward stereoelectronic modification when compared with organic azides. We find that strain-promoted cycloadditions of cyclic nitrones with bicyclo[6.1.0]nonyne react with second-order rate constants as large as 1.49 L mol−1 s−1 at 25 °C. These reactions display rate constants that are up to 37-fold greater than those of the analogous reactions of benzyl azide with bicyclo[6.1.0]nonyne. We observed that reactions of nitrones with bicyclo[6.1.0]nonyne showed a stronger dependence on substituent effect for the reaction, as evidenced by a larger Hammett ρ value, than that for biaryl-aza-cyclooctanone. We demonstrate the ability to stereoelectronically tune the reactivity of nitrones towards different cyclooctynes in SPANC reactions. This ability to introduce selectivity into different SPANC reactions through substituent provides the opportunity to perform multiple SPANC reactions in one reaction vessel and opens up potential applications in multiplex labeling.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
W. Gabsi ◽  
T. Boubaker ◽  
R. Goumont

Kinetics studies for the coupling reactions of the 3-X-thiophene 1a-c (X = CH3, H and Br) with the electrophiles 2a and 3a-c have been investigated in acetonitrile at 20°C The second-order rate constants have been employed to determine the nucleophilicity parameters N and s of the thiophene 1 according the Mayr equation log k (20°C) = s (E + N). The nucleophilic-specific parameters N and s quantified in this work have been derived and compared with the reactivity of other C nucleophiles. Based on the linear correlations log k1 = f(E) and log k1 = f(σp+), we have shown that the mechanism of interactions occurs by a unique process: electrophilic heteroaromatic substitution of an α-carbon position of substituted 3-X-thiophenes 1 known hyperortho correlation.


RSC Advances ◽  
2014 ◽  
Vol 4 (83) ◽  
pp. 43882-43889 ◽  
Author(s):  
Keiko Inami ◽  
Mariko Suzuki ◽  
Azusa Shimizu ◽  
Miyuki Furukawa ◽  
Mine Morita ◽  
...  

A series of 6-chromanol derivatives were synthesized, and their second order rate constants (k) for the reaction with galvinoxyl radical were determined. The reaction constants from the slope, which plotted with the log k versus the Hammett sigma or Taft sigma constants for the four substituents at each, were obtained.


1988 ◽  
Vol 60 (02) ◽  
pp. 247-250 ◽  
Author(s):  
H R Lijnen ◽  
L Nelles ◽  
B Van Hoef ◽  
F De Cock ◽  
D Collen

SummaryRecombinant chimaeric molecules between tissue-type plasminogen activator (t-PA) and single chain urokinase-type plasminogen activator (scu-PA) or two chain urokinase-type plasminogen activator (tcu-PA) have intact enzymatic properties of scu-PA or tcu-PA towards natural and synthetic substrates (Nelles et al., J Biol Chem 1987; 262: 10855-10862). In the present study, we have compared the reactivity with inhibitors of both the single chain and two chain variants of recombinant u-PA and two recombinant chimaeric molecules between t-PA and scu-PA (t-PA/u-PA-s: amino acids 1-263 of t-PA and 144-411 of u-PA; t-PA/u-PA-e: amino acids 1-274 of t-PA and 138-411 of u-PA). Incubation with human plasma in the absence of a fibrin clot for 3 h at 37° C at equipotent concentrations (50% clot lysis in 2 h), resulted in significant fibrinogen breakdown (to about 40% of the normal value) for all two chain molecules, but not for their single chain counterparts. Preincubation of the plasminogen activators with plasma for 3 h at 37° C, resulted in complete inhibition of the fibrinolytic potency of the two chain molecules but did not alter the potency of the single chain molecules. Inhibition of the two chain molecules occurred with a t½ of approximately 45 min. The two chain variants were inhibited by the synthetic urokinase inhibitor Glu-Gly-Arg-CH2CCl with apparent second-order rate constants of 8,000-10,000 M−1s−1, by purified α2-antiplasmin with second-order rate constants of about 300 M−1s−1, and by plasminogen activator inhibitor-1 (PAI-1) with second-order rate constants of approximately 2 × 107 M−1s−1.It is concluded that the reactivity of single chain and two chain forms of t-PA/u-PA chimaers with inhibitors is very similar to that of the single and two chain forms of intact u-PA.


1983 ◽  
Vol 48 (5) ◽  
pp. 1358-1367 ◽  
Author(s):  
Antonín Tockstein ◽  
František Skopal

A method for constructing curves is proposed that are linear in a wide region and from whose slopes it is possible to determine the rate constant, if a parameter, θ, is calculated numerically from a rapidly converging recurrent formula or from its explicit form. The values of rate constants and parameter θ thus simply found are compared with those found by an optimization algorithm on a computer; the deviations do not exceed ±10%.


1981 ◽  
Vol 46 (3) ◽  
pp. 561-572 ◽  
Author(s):  
Karel Komers

The author derived theoretical dependences of preasymptotic slopes of the currentless E-t curves (potential of an indicator redox electrode against time) on the number of equivalents, n, of added oxidation agent, assuming a reaction scheme of two consecutive concurrent second-order reactions involving the formation of intermediate products ( a side reaction of the starting compound with the final oxidation product leading to an adduct, which undergoes consecutive bimolecular oxidations leading again to the final product). The dependences enable to determine the type of the relatively stable intermediate products and the ratios of the rate constants. The theory was applied to the oxidation of four symmetrically disulphonated naphthidines with cerium(IV) sulphate in aqueous sulphuric acid and the results were substantiated spectrophotometrically


1983 ◽  
Vol 48 (11) ◽  
pp. 3279-3286
Author(s):  
Slavko Hudeček ◽  
Miloslav Bohdanecký ◽  
Ivana Hudečková ◽  
Pavel Špaček ◽  
Pavel Čefelín

The reaction between hexamethylenediisocyanate and 1-pentanol in toluene was studied by means of reversed-phase liquid chromatography. By employing this method, it was possible to determine all components of the reaction mixture including both products, i.e. N-(6-isocyanate hexyl)pentylcarbamate and N,N'-bis(pentyloxycarbonyl)hexamethylenediamine. Relations for the calculation of kinetic constants were derived assuming a competitive consecutive second-order reaction. It was demonstrated that the reaction involved in this case is indeed a second-order reaction, and the rate constants of the first and second consecutive reactions were determined.


1989 ◽  
Vol 54 (5) ◽  
pp. 1311-1317
Author(s):  
Miroslav Magura ◽  
Ján Vojtko ◽  
Ján Ilavský

The kinetics of liquid-phase isothermal esterification of POCl3 with 2-isopropylphenol and 4-isopropylphenol have been studied within the temperature intervals of 110 to 130 and 90 to 110 °C, respectively. The rate constants and activation energies of the individual steps of this three-step reaction have been calculated from the values measured. The reaction rates of the two isomers markedly differ: at 110 °C 4-isopropylphenol reacts faster by the factors of about 7 and 20 for k1 and k3, respectively. This finding can be utilized in preparation of mixed triaryl phosphates, since the alkylation mixture after reaction of phenol with propene contains an excess of 2-isopropylphenol over 4-isopropylphenol.


2006 ◽  
Vol 71 (11-12) ◽  
pp. 1557-1570 ◽  
Author(s):  
Vilve Nummert ◽  
Mare Piirsalu ◽  
Ilmar A. Koppel

The second-order rate constants k2 (dm3 mol-1 s-1) for the alkaline hydrolysis of substituted alkyl benzoates C6H5CO2R have been measured spectrophotometrically in aqueous 0.5 M Bu4NBr at 50 and 25 °C (R = CH3, CH2Cl, CH2CN, CH2C≡CH, CH2C6H5, CH2CH2Cl, CH2CH2OCH3, CH2CH3) and in aqueous 5.3 M NaClO4 at 25 °C (R = CH3, CH2Cl, CH2CN, CH2C≡CH). The dependence of the alkyl substituent effects on different solvent parameters was studied using the following equations:      ∆ log k = c0 + c1σI + c2EsB + c3∆E + c4∆Y + c5∆P + c6∆EσI + c7∆YσI + c8∆PσI     ∆ log k = c0 + c1σ* + c2EsB + c3∆E + c4∆Y + c5∆P + c6∆Eσ* + c7∆Yσ* + c8∆Pσ* .  ∆ log k = log kR - log kCH3. σI and σ* are the Taft inductive and polar substituent constants. E, Y and P are the solvent electrophilicity, polarity and polarizability parameters, respectively. In the data treatment ∆E = ES - EH2O , ∆Y = YS - YH2O , ∆P = PS - PH2O were used. The solvent electrophilicity, E, was found to be the main factor responsible for changes in alkyl substituent effects with medium. When σI constants were used, variation of the polar term of alkyl substituents with the solvent electrophilicity E was found to be similar to that observed earlier for meta and para substituents, but twice less when σ* constants were used. The steric term for alkyl substituents was approximately independent of the solvent parameters.


1999 ◽  
Vol 64 (11) ◽  
pp. 1770-1779 ◽  
Author(s):  
Herbert Mayr ◽  
Karl-Heinz Müller

The kinetics of the electrophilic additions of four diarylcarbenium ions (4a-4d) to tricarbonyl(η4-cyclohepta-1,3,5-triene)iron (1) have been studied photometrically. The second-order rate constants match the linear Gibbs energy relationship log k20 °C = s(E + N) and yield the nucleophilicity parameter N(1) = 3.69. It is concluded that electrophiles with E ≥ -9 will react with complex 1 at ambient temperature.


1987 ◽  
Author(s):  
Moideen P Jamaluddin

Platelet aggregation kinetics, according to the particle collision theory, generally assumed to apply, ought to conform to a second order type of rate law. But published data on the time-course of ADP-induced single platelet recruitment into aggregates were found not to do so and to lead to abnormal second order rate constants much larger than even their theoretical upper bounds. The data were, instead, found to fit a first order type of rate law rather well with rate constants in the range of 0.04 - 0.27 s-1. These results were confirmed in our laboratory employing gelfiltered calf platelets. Thus a mechanism much more complex than hithertofore recognized, is operative. The following kinetic scheme was formulated on the basis of information gleaned from the literature.where P is the nonaggregable, discoid platelet, A the agonist, P* an aggregable platelet form with membranous protrusions, and P** another aggregable platelet form with pseudopods. Taking into account the relative magnitudes of the k*s and assuming aggregation to be driven by hydrophobic interaction between complementary surfaces of P* and P** species, a rate equation was derived for aggregation. The kinetic scheme and the rate equation could account for the apparent first order rate law and other empirical observations in the literature.


Sign in / Sign up

Export Citation Format

Share Document