scholarly journals Microfluidic encapsulation of SN-38 in block copolymer nanoparticles: effect of hydrophobic block composition on loading and release properties

2019 ◽  
Vol 97 (5) ◽  
pp. 337-343
Author(s):  
Danica Jensen ◽  
Yimeng Cao ◽  
Changhai Lu ◽  
Jeremy E. Wulff ◽  
Matthew G. Moffitt

A gas–liquid microfluidic reactor was used to prepare polymer nanoparticles (PNPs) containing the drug 7-ethyl-10-hydroxy camptothecin (SN-38) from a series of poly(methyl caprolactone-co-caprolactone)-b-poly(ethylene oxide) (P(MCL-co-CL)-b-PEO) amphiphilic block copolymers with variable MCL content in the hydrophobic block. All three copolymers formed spheres with ∼20 nm core diameters by TEM, although some rigid rod-like aggregates were also formed by the PMCL-50 and PMCL-75 copolymers. SN-38 encapsulation efficiencies (EE = 2.7%–3.0%) and loading levels (DL = 2.0%–2.9%) were similar for the three copolymers. In vitro release kinetics became significantly slower as the MCL content increased, with release half times increasing monotonically from 3.4 to 6.2 h as the MCL content of the hydrophobic block increased from 50% to 100%. The ability to systematically tune release half times via controlled variation in the hydrophobic block composition, while maintaining constant PNP size and loading levels, represents an intriguing chemical handle for the optimization of SN-38 nanomedicines.

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1655
Author(s):  
Zvezdelina Yaneva ◽  
Donika Ivanova ◽  
Nikolay Popov

The main goal of the present study was to investigate the microencapsulation, in vitro release capacity and efficiency of catechin-rich Acacia catechu extract by Clinosorbent-5 (CLS-5) microparticles by in-depth detailed analyses and mathematical modelling of the encapsulation and in vitro release kinetics behaviour of the polyphenol-mineral composite system. The bioflavanol encapsulation and release efficiency on/from the mineral matrix were assessed by sorption experiments and interpretative modelling of the experimental data. The surface and spectral characteristics of the natural bioactive substance and the inorganic microcarrier were determined by Fourier Transform Infrared Spectroscopy (FTIR) and Ultraviolet/Visible (UV/Vis) spectrophotometric analyses. The maximum extent of catechin microencapsulation in acidic medium was 32%. The in vitro release kinetics study in simulated enzyme-free gastric medium (pH = 1.2) approved 88% maximum release efficiency achieved after 24 h. The in vitro release profile displayed that the developed bioflavanol/clinoptilolite microcarrier system provided sustained catechin in vitro release behaviour without an initial burst effect. Thus, the results from the present study are essential for the design and development of innovative catechin-CLS-5 microcarrier systems for application in human and veterinary medicine.


Sign in / Sign up

Export Citation Format

Share Document