scholarly journals Performance based seismic assessment of bridges designed according to Canadian Highway Bridge Design Code

2014 ◽  
Vol 41 (9) ◽  
pp. 777-787 ◽  
Author(s):  
M. Neaz Sheikh ◽  
Frédéric Légeron

Recent research efforts have focused on the development of performance based seismic design methodologies for structures. However, the seismic design rules prescribed in the current Canadian Highway Bridge Design Code (CHBDC) is based largely on force based design principles. Although a set of performance requirements (performance objectives) for different return period earthquake events have been specified, there is no explicit requirement in the CHBDC to check the attainment of such performance objectives for the designed bridges. Also, no engineering parameters have been assigned to the specified performance objectives. This paper correlates seismic performance objectives (both qualitative and quantitative) with engineering parameters, based on the data collected from published experimental investigations and field investigation reports of recent earthquakes. A simple method has been developed and validated with experimental results for assessing the performance of bridges designed according to CHBDC. It has been found that the design rules prescribed in CHBDC do not guarantee that specified multiple seismic performance objectives can be achieved. An implicit seismic design rule in the form of performance response modification factor has been outlined for the performance based seismic design of bridges.

2011 ◽  
Vol 261-263 ◽  
pp. 1134-1138 ◽  
Author(s):  
Ying Sun ◽  
Shang Guan Ping ◽  
Yin Gu ◽  
Wei Dong Zhuo

In this paper, a simple and practical performance-based seismic design (PBSD) method for regular highway bridges is suggested. In the proposed PBSD method, the drift ratio of the bridge column is employed as quantitative indices of seismic performance levels, and its target values for each seismic performance level are given. The whole design processes of a regular highway bridge with various performance objects under different seismic levels are demonstrated.


2016 ◽  
Vol 43 (8) ◽  
pp. 741-748 ◽  
Author(s):  
Qi Zhang ◽  
M. Shahria Alam ◽  
Saqib Khan ◽  
Jianping Jiang

Performance-based design (PBD) was first introduced in Canadian Highway Bridge Design Code (CHBDC) in 2014. Performance-based design is the design that meets multiple performance criteria under different earthquake hazards. To investigate the impact of changes in CHBDC 2014, a four-span concrete highway bridge is designed and evaluated using force-based design (FBD) and PBD methods as per CHBDC 2014, and FBD method as per CHBDC 2006. By incorporating soil–structure interaction (using p–y curves) nonlinear pushover and dynamic time history analyses are conducted to assess the seismic performance of these bridges. Maximum strains of concrete and reinforcing steel are compared among the three designs to determine their performance levels. It is concluded that PBD (CHBDC 2014) is highly conservative compared to FBD (for both CHBDC 2014 and 2006). For the three-level PBD approach, the design is governed by the criterion of reinforcing steel not yielding under the design earthquake (with 475 years return period).


1998 ◽  
Vol 25 (4) ◽  
pp. 797-801 ◽  
Author(s):  
Leslie G Jaeger ◽  
Baidar Bakht ◽  
Gamil Tadros

In order to calculate prestress losses in the transverse prestressing of voided concrete slabs, it is sometimes convenient to estimate the thickness of an equivalent solid slab. The Ontario Highway Bridge Design Code, as well as the forthcoming Canadian Highway Bridge Design Code, specifies a simple expression for calculating this equivalent thickness. This expression is reviewed in this technical note, and a simple alternative expression, believed to be more accurate, is proposed, along with its derivation. It is shown that the equivalent solid slab thickness obtained from consideration of in-plane forces is also applicable to transverse shear deformations, provided that the usual approximations of elementary strength of materials are used in both cases.Key words: axial stiffness, equivalent area, shear deformation, transverse prestressing, voided slab, slab.


Author(s):  
Michelle Y. X. Chien ◽  
Scott Walbridge ◽  
Bertram Kühn

Brittle fracture is a major concern to structural engineers as it has significant consequences for safety and cost. Although modern day occurrences of brittle fracture are rare, it is well known that they can occur without warning and may lead to the sudden closure of a bridge, loss of service, expensive repairs, and/or loss of property or life. In Canada, steel bridge fracture is a particularly significant concern because of the harsh climate. If the toughness properties are improperly specified, many steels could be on the lower shelf of the toughness-temperature curve. A comparison of brittle fracture design provisions around the world reveals that more sophisticated approaches have been developed for modeling and understanding brittle fracture in existing and new bridges than those currently in use in North America, including Canada and the U.S.A. This paper describes the European brittle fracture provisions and presents a comparison of the North American and European design provisions using the example of a typical steel-concrete composite highway bridge. On the basis of this comparison, situations where one set of design rules may be more or less conservative are identified, and opportunities for improvement and areas warranting further study are highlighted.


1984 ◽  
Vol 11 (4) ◽  
pp. 833-843 ◽  
Author(s):  
J. R. Billing

The Ontario Highway Bridge Design Code (OHBDC) contains provisions on dynamic load and vibration that are substantially different from other codes. Dynamic testing of 27 bridges of various configurations, of steel, timber, and concrete construction, and with spans from 5 to 122 m was therefore undertaken to obtain comprehensive data to support OHBDC provisions. Standardized instrumentation, data acquisition, and test and data processing procedures were used for all bridge tests. Data was gathered from passing trucks, and scheduled runs by test vehicles of various weights. Accelerometer responses were used to determine bridge vibration modes, and dynamic amplifications were obtained from displacement or strain measurements. The form of the provisions adopted for dynamic load and vibration was confirmed by the test results, subject to minor adjustment of values. Observations on the distribution of dynamic load, and its relationship to span length and vehicle weight, may provide a basis for future refinement of the dynamic load provisions. If the stiffness of curbs and barrier walls is not included in deflection calculations, bridges designed by deflection could be penalized. Key words: bridges, vibration, bridge testing, bridge design codes.


2017 ◽  
Vol 54 (10) ◽  
pp. 1521-1521
Author(s):  
Gordon A. Fenton ◽  
Farzaneh Naghibi ◽  
David Dundas ◽  
Richard J. Bathurst ◽  
D.V. Griffiths

Sign in / Sign up

Export Citation Format

Share Document